Что такое напряжение холостого хода солнечной батареи

Устройство и принцип работы солнечной батареи

Приветствую вас на сайте е-ветерок.ру — я не буду грузить вас ненужной информацией о структуре солнечных элементов и полупроводников, о том что они состоят из выращенных кристаллов кремния, которые являются кварцевым песком, прочей химией и физикой. Об этом вы можете почитать здесь О солнечных панелях Давайте сразу перейдём к конечному продукту и его характерристикам.

Солнечная батарея представляет из себя «пирог», который спекается при высокой температуре.

  • 1. выкладывается рама из анодированного алюминия
  • 2. вначале ложится специальная антибликовая плёнка
  • 3. на неё ложится стекло (закалённое 4мм)
  • 4. на стекло выкладывается специальная прозрачная плёнка (EVA)
  • 5. сверху на плёнку укладываются предварительно распаянная цепочка из солнечных элементов
  • 6. далее укладывается второй слой плёнки EVA
  • 7. последний слой это непрозрачная белая плёнка

    Этот пирог отправляют в печь, где всё это спекается — склеивается. Плёнка намертво расплавляется и прилипает к стеклу, элементы полностью герметизируются внутри, прикрываясь плотно к пленкам с обеих сторон.

  • 8. после спекания присоединяется распределительная коробка
  • 9. присоединяются провода

    Солнечная батарея состоит из солнечных элементов, это фотоэлектрические модули (ФЭМ), их можно назвать ячейками. Ячейки в солнечной батарее соединяются последовательно, чтобы увеличить напряжение батареи до требуемого, так-как напряжение одной ячейки составляет всего 0,6V. А для зарядки 12-ти вольтового аккумулятора требуется как минимум 14 вольт. Но напряжение солнечного элемента зависит от освещённости, и чтобы напряжение даже в пасмурную погоду было выше 14 вольт, количество ячеек в батарее обычно равно 36. Напряжение холостого хода при этом 21.6 вольта. Бывают батареи с с другим количеством ячеек, для систем на 24 вольта изготавливаются солнечные панели на 72 ячейки, а так-же на 60 ячеек.

    Читайте также:  Солнечные панели от гугл

    Один солнечный элемент выдаёт напряжение максимум 0,6 вольт, но достаточно большой ток. Например ячейка размером 156×156мм с эффективностью 17% даёт ток короткого замыкания порядка 9А. Максимальная мощность одного элемента будет при просадке напряжения до 0,47-0,50 вольт. Таким образом батарея состоящая из 36 элементов будет максимально эффективна при напряжении 17-18 вольт. При этом ток под нагрузкой будет составлять чуть более 8 Ампер, а мощность порядка 150 ватт.

    Но если мы используем простой PWM контроллер зарядки АКБ, то напряжение будет равно текущему напряжению аккумулятора. А если напряжение достигнет 14 вольт, то контроллер будет отключать солнечную батарею чтобы аккумулятор не перезарядился. Это я к тому что при заряде напряжение солнечной панели не 17-18 вольт, а 13-14 вольт, а это значит что батарея выдаёт не всю свою мощность, так-как ток она даёт всего 8А, отсюда 14*8=112 ватт. Таким образом 30% энергии просто теряется.

    Такую-же мощность (112 ватт) можно получить если бы в солнечной батарее было не 36 элементов, а 28 элементов. При солнце была-ба такая-же мощность что и с 36 элементов, да хоть с 72 элемента, так-как ток не может быть больше 8 ампер, а напряжение проседает до напряжения АКБ. Но тогда в пасмурную погоду не будет зарядки, так-как напряжение упадет и будет ниже напряжения АКБ. Только для стабильной зарядки ставят лишние 8 солнечных элементов в батареи. Чтобы снимать до 98% энергии с солнечной батареи ставят MPPT контроллеры, которые держат панель в точке максимальной мощности и получаемую энергию преобразуют снижая напряжение на выходе и повышая ток. Так на входе контроллера будет 18 вольт и 8А, а на выходе 14 вольт и 10 Ампер.

    Выпускают солнечные батареи и на 60 элементов, напряжение холостого хода которых 36 вольт, они предназначены для АКБ на 24 вольта, или если соединить две последовательно то для систем на 48 вольт. Такие батареи получаются дешевле, но в пасмурную погоду отдача панелей ниже чем у панелей состоящих их 72 элемента, и если совсем пасмурно то зарядки не будет. Но хочу отметить что в пасмурную погоду мощность солнечных батарей падает в 15-20 раз. И например если при солнце вы получали 100 ватт*ч энергии, то при затянутом облаками небе вы получите всего порядка 5 ватт. Я думаю нет особого смысла переплачивать на 30% больше за солнечные батареи чтобы в пасмурную погоду иметь такое небольшое преимущество. Хотя лучше всего чтобы снимать 98% энергии использовать MPPT контроллер.

    Многие спрашивают что лучше, монокристаллические батареи или поликристаллические?

    Монокристаллические панели немного дороже так-как в их производстве ячеек используется кремний высокой очистки, до 100%, и процесс образования кристаллов происходит при 1300°. КПД монокристаллических панелей немного выше, и кристаллы в ячейках направлены строго параллельно, и однородны. От этого максимальный КПД только при прямых солнечных лучах, а при свечении под углом КПД значительно падает.

    Поликристаллические ячейки производятся методом осаждения паров кремния при температуре 300°, и кристаллы усаживаются неравномерно, и направлены в разные стороны. Из-за этого ниже КПД, но они лучше работают при рассеянном свете, и высоких температурах.

    Но разница совсем незначительна, и зависит от качества самих ячеек, их светочувствительности и других факторов. В итоге разница не превышает 5%, и это заметно только в пасмурную погоду. Или при очень острых углах падения солнечных лучей.

    Источник

    Словарь терминов по солнечной энергетике

    СБ — солнечная батарея;

    СМ — солнечный модуль;

    АКБ — аккумуляторная батарея;

    ВАХ — вольтамперная характеристика, графически выраженная зависимость тока от напряжения фотоэлемента/солнечного модуля;

    ВИЭ — возобновляемый источник энергии;

    ФЭС — фотоэлектрическая станция;

    КПД — коэффициент полезного действия;

    ФЭП — фотоэлектрический преобразователь;

    СЭС — солнечная электростанция;

    Напряжение холостого хода(Uxx) -это напряжение между выводами фотоэлемента или солнечного модуля, когда нет нагрузки;

    Номинальное напряжение солнечной батареи (Uн) — существует стандартный ряд напряжений аккумуляторных батарей(6В, 12В, 24В, 48В, 60В и т.д.). Номинальное напряжение для солнечных модулей берется из этого же ряда. Исключение составляют модули с нестандартным напряжением, кторые используются с контроллерами МРРТ или сетевыми инверторами;

    Напряжение максимальной мощности (Up) — иначе рабочее напряжение. При этом напряжении мощность, снимаемая с фотоэлемента или солнечного модуля достигает максимума;

    Ток короткого замыкания(Iкз) — ток, который может развить солнечный элемент или модуль, если замкнуть его выводы накоротко;

    Рабочий ток(Ip) — иначе ток максимальной мощности. Протекает через фотоэлемент при напряжении максимальной мощности;

    Паспортная мощность солнечной батареи(Wр) — для унификации солнечные модули и элементы паспортизируются в определенных условиях(STC-Standart Test Condition),освещенность 1000Вт/м2,температура 25°С, спектр АМ1.5;

    Инсоляция — освещенность поверхности, измеряемая в кВтч/м²

    Fill-фактор — коэффициент заполнения идеальной ВАХ;

    Пикочасы — условное время в течении которого можно принять освещенность равной 1000Вт/м²;

    Монокристаллический кремний — кремний, который получают методом Чохральского, внешне это цилиндрические слитки;

    Аморфный кремний — получают напылением на подложку техникой испарения, а затем и защищается покрытием, иначе называется тонкопленочным;

    Поликристаллический кремний — кремний, который получают при помощи метода направленной кристаллизации, внешне выглядит как прямоугольные блоки;

    Мультикремний — синоним поликристаллического кремния;

    Блокирующий диод — диод предотвращающий разряд АКБ через СБ при отсутствии достаточной освещенности для работы СБ(входит в состав контроллера заряда АКБ);

    Баррирующий диод — обычный полупроводниковый диод. Защищает солнечный модуль в составе мощной солнечной батареи при частичном затенении;

    Средняя точка — вывод из средней части схемы солнечного модуля. К ней подкючаются баррирующие диоды;

    Линейка фотоэлементов — спаянные в одну полоску фотоэлементы;

    Токосъемная дорожка — самый широкий элемент токосъемной сетки, объединяет более тонкие токосъемные дорожки и предназначен для напаивания монтажной шинки(плоского проводника);

    Токосъемная сетка — нанесенная на поверхность фотоэлемента токопроводящая сетка, предназначенная для наиболее полного съема генерируемой фотоэлементом энергии;

    Инвертор — важный компонент солнечной энергоустановки, который преобразует постоянное напряжение АКБ переменное;

    Контроллер заряда АКБ — прибор для контроля за уровнем заряда АКБ, предотвращает перезаряд и переразряд АКБ, сохраняет срок службы АКБ;

    Солнечный модуль — солнечным модулем называется несколько объединённых в один блок солнечных элементов (фотоэлементов);

    Солнечная батарея — это совокупность параллельно, последовательно или последовательно-параллельно скоммутированных солнечных модулей;

    Солнечный элемент — основной компонент для создания солнечных модулей, преобразует энергию фотонов в электрическую энергию; Монтажная шина — плоский медный луженый проводник , используемый для спаивания фотоэлементов;

    Псевдоквадрат — фактически восьмигранник, наиболее распространенная форма фотоэлементов;

    Каркасный солнечный модуль — это солнечный модуль помещенный в алюминиевый или из иного материала каркас для придания герметичности и большей жесткости;

    Бескаркасный солнечный модуль — это модуль без алюминиевого каркаса. Лицевая сторона защищена ПЭТ пленкой, тыльная сторона подложкой из стеклотекстолита или той же пленки ПЭТ, предназначен для эксплуатации в условиях более щадящих чем их каркасные собратья;

    Соединительная коробка — иначе называется еще клеммная котобка(junction box). Под её крышкой находятся выводы солнечного модуля, крепится с обратной стороны модуля;

    Сальник — служит для кабельного вывода из клеммной коробки и предохраняет внутреннюю часть клеммной коробки солнечного модуля от проникновения влаги;

    ПЭТ — полиэтилентерефталатная пленка для защиты тыльной стороны солнечного модуля;

    ЭВА — этилвинилацетатная пленка для герметизации фотоэлементов при помощи ламинатора;

    Текстурированное стекло — текстура наносимая на поверхность стекла путем «замораживания» направленного контролируемого взрыва, позволяет снижать потери на отражение от поверхности стекла;

    Стрингер — робот для автоматизированной спайки солнечных элементов;

    Ламинатор — агрегат для герметизации схемы из фотоэлементов методом вакуумного ламинирования;

    Адгезив — состав, наносимый на стекло и ПЭТ пленку для лучшего сцепления материалов;

    Осветитель — прибор для имитации излучения солнечного спектра для тестирования фотоэлементов и солнечных модулей;

    © 2001-2015 «SOLBAT-Солнечные батареи», Все права защишены. Копирование запрещено.

    Источник

    Солнечная батарея (панель)

    Солнечная батарея или солнечная панель – это самый доступный способ получать энергию от солнца.

    Типы солнечных ячеек

    В основном в солнечной промышленной энергетике выделяют два типа ячеек – это поликристаллические ячейки, а также монокристаллические ячейки.

    Про плюсы и минусы моно- и поликристаллических панелей можете прочитать в этой статье. Одно скажу точно, солнечная батарея из монокристалла лучше по всем характеристикам, хотя и дороже по цене.

    Что такое солнечная батарея

    Солнечная батарея представляет из себя множество солнечных ячеек, которые соединены в определенной последовательности. Они могут быть соединены последовательно, параллельно, или даже последовательно-параллельно.

    Вот так выглядит солнечная панель на 100 Вт

    Вид панели с обратной стороны

    Сзади на этикетке параметры этой панели:

    Основные параметры солнечной батареи

    Максимальная мощность (Maximum power)

    Этот параметр солнечной панели показывает, какую максимальную мощность может выдать такая панель в солнечный день, при условии, что солнце будет в зените и панель будет полностью освещаться солнечными лучами.

    Максимальное напряжение при нагрузке (Maximum power voltage)

    Максимальное значение напряжение при условии, что панель выдает в нагрузку максимальную мощность. То есть этот параметр также учитывает, что панель должна быть под солнцем в зените в яркий солнечный день.

    Максимальный ток, который может выдать солнечная панель в нагрузку (Maximum Power Current)

    Этот параметр показывает, какой максимальную силу тока может выдать панель в нагрузку.

    Напряжение в холостом режиме (Open Circuit Voltage)

    Это напряжение на клеммах солнечной панели в яркий солнечный день, при условии, что к клеммах не подсоединяется никакая нагрузка.

    Ток короткого замыкания ( Short Circuit Current)

    Это сила тока, которая будет течь в цепи солнечной панели, если ее клеммы соединить между собой, при условии, что панель находится под солнцем.

    Ну а далее различные массо-габаритные характеристики. Также в сопроводительном листе были указаны такие параметры, как КПД солнечного модуля = 15,2%, закаленное матовое стекло толщиной в 3,2 мм, а также рабочий диапазон температур от -40 и до +80 градусов по Цельсию. По заявлению производителя, такая панель выдерживает град размером в горох и срок ее службы составляет 15-20 лет. Ну что же, поживем увидим.

    Солнечная батарея в ясный день

    Итак, в нашей статье мы будем ставить опыты с солнечной панелью на 100 Вт и посмотрим, целесообразно ли ее было покупать. Так как я живу в Удмуртии, это получается 57 градусов северной широты. Лето теплое солнечное, зима умеренно-холодная.

    Приятный солнечный денек 10 июня. На небе ни тучки, солнце в зените.

    Направляю панель на солнышко и смотрю напряжение на клеммах в холостом режиме.

    23,1 Вольта халявы)

    А теперь смотрим ток короткого замыкания. Для этого ставим мультиметр в режим измерения силы тока и соединяем выводы солнечной панели.

    Все прям почти как по описанию).

    Берем галогенную автомобильную лампу и цепляем к панели

    Горит так, что даже глаза слепит.

    Давайте замеряем напряжение на клеммах панели с нагрузкой-лампочкой.

    Смотрим силу тока, которую кушает наша автомобильная лампочка:

    Давайте посчитаем, какую мощность кушает лампочка от панельки. Вспоминаем, что мощность – это произведение силы тока на напряжение. То есть получаем P=IU=5,45 x 16,2 = 88,3 Ватта. Как видите, панелька в легкую питает нагрузку, которая кушает 88,3 Ватта при напряжении в 16,2 Вольта. Честно говоря, более чем 14,4 Вольт подавать на лампочку не стоило бы, так как она автомобильная. Но вроде осталась жива.

    Солнечная батарея в пасмурный день

    Все бы хорошо, но сказка рано или поздно заканчивается. На следующий день солнышко зашло и на небе стали появляться грозовые тучки:

    Замеряем напряжение на клеммах без нагрузки:

    Напряжение вроде бы есть.

    Замеряем силу тока короткого замыкания:

    Даже меньше Ампера…. На то она и солнечная батарея).

    Что внутри солнечной батареи

    Распределительная коробка имеет уровень защиты IP67, что говорит о том, что она пыленепроницаемая и водонепроницаемая:

    Внутри стоят два мощных диода, скорее всего диоды Шоттки

    Они нужны для того, чтобы электрический ток шел только от солнечной панели к нагрузке.

    Как сделать мини-электростанцию на солнечных батареях

    Сейчас с Али мне идет солнечный контроллер

    Будем делать миниэлектростанцию для своей лаборатории по классической схеме:

    Синяя коробочка – это и есть контроллер. Черная коробочка под ним – это инвертор, который преобразует 12 Вольт постоянного тока от аккумулятора в 220 Вольт переменного тока (в напряжение в вашей домашней розетке). Остальные части схемы вам уже известны. Эта схема полностью автономная и требует минимального обслуживания.

    Стоит ли брать солнечные батареи?

    Давайте посчитаем вместе. Сама 100 Ваттная панель стоит 5000 руб. Хотя, на Алибабе (отец Алиэкпресса) оптом можно затариться дешевле, хотя и по доставке еще надо будет решать вопрос:

    Моя панель выдает 0,1 Киловатт. Допустим у нас солнце светит в среднем в год по 8 часов в день. Получается, за день панель может производить энергию в количестве 0,1 х 8 = 0,8 Киловатт х часов. У нас в селе Киловатт в час стоит 2,5 рублей. Стоит ли игра свеч? Я думаю, что нет. По крайней мере у меня в Удмуртии. В южных странах, где солнце “поливает” по 12 часов в день – это будет лучшим решением.

    Но теперь давайте рассмотрим другой случай.

    Ваш маленький домик находится в глуши. Хватит ли одной такой панели, чтобы поддерживать маломальский комфорт, типа освещения, питания ноутбука, телефона и ловли интернета? Вполне. Думаю, будет даже выгоднее, чем дизель-генератор. Поэтому, в данном случае солнечные батареи будут наилучшим решением.

    Как соединять солнечные батареи?

    Солнечная панель – это простой источник питания, как аккумулятор или батарейка. Поэтому, для них действуют все те же законы, что и для источников питания. Солнечные панели можно соединять с друг другом последовательно, параллельно или даже последовательно-параллельно. Более подробно про виды соединений источников питания читайте в этой статье.

    Последовательное соединение

    Вот так выглядит параллельное соединение солнечный панелей. В этом случае суммируется выдаваемая сила тока, а напряжение остается таким же

    параллельное соединение солнечных панелей

    Параллельное соединение

    Если же вы хотите увеличить напряжение, то следует соединять панели последовательно. В этом случае у вас напряжения, получаемые с каждой солнечной панели будут суммироваться.

    последовательное соединение солнечных панелей

    Последовательно-параллельное соединение

    Если вы хотите увеличить и напряжение и выдаваемую силу тока, то в этом случае соединяют панели последовательно-параллельно

    последовательно-параллельное соединение солнечных панелей

    Заключение

    Использование альтернативной энергии бывает иногда очень полезно в некоторых случаях, особенно для питания автономных устройств, типа уличного освещения, радиопередатчиков, питания различных GSM-сигнализаций в садоогороде и тд.

    Ну а если кто-то сомневается в будущем солнечной энергетики, просто взгляните на эти солнечные батареи, которые вырабатывают Мегаватты энергии за день!

    Источник

  • Оцените статью