Что такое контроллер заряда батареи для солнечных панелей

Контроллеры заряда солнечной батареи

Здесь вы узнаете:

Контроллер заряда солнечных батарей — обязательный элемент энергосистемы на солнечных панелях, кроме аккумуляторов и самих панелей. За что он отвечает и как его сделать самому?

Когда нужен контроллер

Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.

Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.

Далее мы разберемся в устройстве и принципах работы этого прибора, а также расскажем о способах его подключения.

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Функции контроллера для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.

Читайте также:  Площадь солнечной батареи 100вт


Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.


В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Характеристики устройства

Низкое потребление мощности в режиме простоя. Схема была разработана для небольших и средних свинцово-кислотных аккумуляторных батарей и потребляет маленький ток (5 мА) в режиме простоя. Это увеличивает продолжительность жизни аккумуляторных батарей.

Легкодоступные компоненты. В устройстве используются обычные компоненты (не SMD), которые легко можно найти в магазинах. Ничего не требуется прошивать, единственное нужен будет вольтметр и регулируемый источник питания для настройки схемы.

Последняя версия устройства. Это уже третья версия устройства, поэтому в нем исправлены большинство ошибок и недочетов, которые присутствовали в предыдущих версиях зарядника.

Регулировка напряжения. В приборе используется параллельный стабилизатор напряжения, чтобы напряжение аккумулятора не превышало норму, обычно это 13.8 Вольт.

Защита от пониженного напряжения. В большинстве солнечных зарядных устройствах для защиты от утечки тока аккумулятора на солнечную панель, используется диод Шоттки. А шунтирующий стабилизатор напряжения используется когда аккумулятор полностью заряжен.
Одной из проблем такого подхода являются потери на диоде и как следствие его нагрев. К примеру, солнечная панель 100 Ватт, 12В, подает 8А на аккумуляторную батарею, на диоде Шоттки падение напряжение составит 0.4В, т.е. рассеиваемая мощность составит около 3.2 Ватта. Это во первых потери, а во вторых для диода понадобится радиатор для отвода тепла. Проблема в том, что уменьшить падение напряжения не получится, несколько диодов включенных параллельно, уменьшат ток, но падение напряжения такое и останется. В представленной ниже схеме, вместо обычных диодов используются мосфеты, следовательно мощность теряется только на активное сопротивление (резистивные потери).

Для сравнения, в 100 Вт панели при использовании мосфетов IRFZ48 (КП741А) потери мощности составляют всего 0.5Ватта (на Q2). А это значит меньший нагрев и больше энергии для аккумуляторов. Еще важным моментов является то, что мосфеты имеют положительный температурный коэффициент и могут быть включены в параллель для уменьшения сопротивления в включенном состоянии.

В приведенной выше схеме используется пара нестандартных решений.

Зарядка. Между солнечной панелью и нагрузкой не используется диод, вместо него стоит мосфет Q2. Диод в мосфете обеспечивает протекание тока от панели к нагрузке. Если на Q2 появляется значительное напряжение, то транзистор Q3 открывается, заряжается конденсатор С4, что заставляет ОУ U2c и U3b открыть мосфет Q2. Теперь, падение напряжения вычисляется по закону Ома, т.е. I*R, и оно намного меньше, чем если бы там стоял диод. Конденсатор С4 периодически разряжается через резистор R7, и Q2 закрывается. Если от панели протекает ток, то ЭДС самоиндукции дросселя L1 сразу же заставляет открыться Q3. Это происходит очень часто (множество раз за секунду). В случае, когда ток идет на солнечную панель, Q2 закрывается, а Q3 не открывается, т.к. диод D2 ограничивает ЭДС самоиндукции дросселя L1. Диод D2 может быть рассчитан на ток 1А, однако в процессе тестирования выяснилось, что такой ток возникает редко.

Подстроечник VR1 устанавливает максимальное напряжение. Когда напряжение превышает 13.8В, то операционный усилитель U2d открывает мосфет Q1 и выход с панели «закорачивается» на землю. Помимо этого, операционник U3b отключает Q2 и т.о. панель отключается от нагрузки. Это необходимо, поскольку Q1 помимо солнечной панели «коротит» нагрузку и аккумулятор.

Управление N-канальными мосфетами. Для управления мосфетами Q2 и Q4 требуется большее напряжение, чем используемое в схеме. Для этого, ОУ U2 с обвязкой из диодов и конденсаторов создает повышенное напряжение VH. Это напряжение используется для питания U3, на выходе которого будет повышенное напряжение. Связка U2b и D10 обеспечивают стабильность выходного напряжения на уровне 24 Вольт. При таком напряжении, через затвор-исток транзистора будет напряжение не меньше 10В, поэтому тепловыделение будет маленькое.
Обычно, N-канальные мосфеты имеют намного меньшее сопротивление, чем Р-канальные, поэтому они и были использованы в данной схеме.

Защита от пониженного напряжения. Мосфет Q4, операционник U3a с внешней обвязкой из резисторов и конденсаторов, предназначены для защиты от пониженного напряжения. Здесь Q4 используется нестандартною. Диод мосфета обеспечивает постоянное прохождение тока в аккумулятор. Когда напряжение выше установленного минимума, то мосфет открыт, допуская небольшое падение напряжения при зарядке аккумулятора, но более важным является то, что он дает возможность прохождения тока от аккумулятора на нагрузку, если солнечная батарея не может обеспечить достаточную выходную мощность. Предохранитель защищает от возникновения короткого замыкания на стороне нагрузки.

Ниже представлены рисунки расположения элементов и печатных плат.

Настройка устройства. При нормальной использовании устройства, джампер J1 не должен быть вставлен! Светодиод D11 используется для настройки. Для настройки устройства, к выводам «нагрузка» подключите регулируемый блок питания.

Установка защиты от пониженного напряжения
Вставьте джампер J1.
В блоке питание установите выходное напряжение на 10.5В.
Вращайте подстроечный резистор VR2 против часовой стрелки до тех пор, пока не загорится светодиод D11.
Немного поверните VR2 по часовой стрелке, пока светодиод не погаснет.
Выньте джампер J1.

Установка максимального напряжения
В блоке питание установите выходное напряжение на 13.8В.
Вращайте подстроечный резистор VR1 по часовой стрелке до тех пор, пока не погаснет светодиод D9.
Медленно поверните VR1 против часовой стрелки, пока светодиод D9 не загорится.

Контроллер настроен. Не забудьте вынуть джампер J1!

Если мощность всей системы будет небольшая, то мосфеты могут быть заменены на более дешевые IRFZ34. А если система будет мощнее, то мосфеты можно заменить на более мощные IRFZ48.

On/Off

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.


Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.


Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.


Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.


Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Самодельный контроллер: особенности, комплектующие

Устройство предназначено для работы только с одной солнечной панелью, которая создает ток с силой, не более 4 А. Емкость аккумулятора, зарядкой которого управляет контроллер, является 3 000 А*ч.

Для изготовления контроллера нужно подготовить следующие элементы:

  • 2 микросхемы: LM385-2.5 и TLC271 (является операционным усилителем);
  • 3 конденсатора: С1 и С2 являются маломощными, имеют 100n; С3 имеет емкость 1000u, рассчитан на 16 V;
  • 1 индикаторный светодиод (D1);
  • 1 диод Шоттки;
  • 1 диод SB540. Вместо него можно использовать любой диод, главное, чтобы он мог выдержать максимальный ток солнечной батареи;
  • 3 транзистора: BUZ11 (Q1), BC548 (Q2), BC556 (Q3);
  • 10 резисторов (R1 – 1k5, R2 – 100, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k). Все они могут быть 5%. Если хочется большей точности, то можно взять резисторы 1%.

Чем можно заменить некоторые комплектующие

Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять. Можно установить обычный диод, но его нужно правильно разместить.

Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно.

Если контроллер не будет использоваться в агрессивной среде, можно провести установку подстроечного резистора. Он дает возможность управлять напряжением. В агрессивной среде он долго не поработает.

При необходимости использовать контроллер для более сильных панелей нужно провести замену транзистора MOSFET и диода более мощными аналогами. Все остальные компоненты менять не нужно. Нет смысла устанавливать радиатор для регулирования 4 А. При установке MOSFET на подходящем теплоотводе устройство сможет работать с более продуктивной панелью.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору. Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Зарядка происходит периодически. При этом ее продолжительность зависит от того, каким является зарядный ток аккумуляторной батареи, и насколько мощные подключенные к ней устройства. Зарядка длится до тех пор, пока напряжение не станет равным 14 В.

Схема включается за очень короткое время. На ее включение влияет время зарядки С2 током, который ограничивает транзистор Q3. Ток не может быть больше 40 мА.

Источник

Оцените статью