Солнечная краска — «зеленое» электричество в каждый дом
Напыляемые солнечные элементы – “почти газетная” печать от специалистов Техасского Университета
«На данный момент наша исследовательская группа занимается изготовлением нанокристаллов. Мы берем элементы группы ‘CIGS’ – медь, индий, галлий, селенид – и формируем из этих неорганических [светопоглощающих] материалов мелкие частицы, которые затем помещаются в растворитель, создавая таким образом чернила или краску», — поясняет Коргел. Эта солнечная «краска» выполняет те же функции, что и громоздкие фотогальванические солнечные коллекторы на крышах зданий и на «солнечных фермах» по всему миру. Крошечные коллекторы Коргел называет «солнечными бутербродами», верхняя и нижняя части которых представлены металлическими контактами, а середина – светопоглощающим слоем.
«Солнечная краска» может распыляться на пластиковые, стеклянные и тканевые поверхности, превращая их в солнечные элементы. Процесс этот чем-то напоминает газетную печать. Подложка может быть слегка гибкой (к примеру, представлять собой ровный лист пластика, металлической фольги или даже лист бумаги). Толщина слоя используемых в краске CIGS наночастиц, к слову, в 10000 раз меньше человеческого волоса.
Отдельные элементы могут собираться в солнечные панели (согласно NREL — по 40 элементов на одну панель), обеспечивая электричеством жилые дома и промышленные предприятия. Единственное «но» заключается в том, что для рентабельности промышленного изготовления «краски» эффективность преобразования солнечного света должна составить 10%. Пока что это значение не превышает 3%, но исследователи надеются, что им удастся повысить его до необходимого уровня.
Напыляемые солнечные элементы – «зеленое» электричество для микроскопических устройств
Исследователи Университета Южной Флориды разработали столь крошечные солнечные элементы, что их можно просто распылять на стены, крыши и любые другие освещаемые солнцем поверхности. Эти элементы способны питать только очень мелкие устройства, так как их размеры не превышают 1мм в длину. Органические полимеры, используемые вместо кремния, позволили д-ру Цзян Сяомэй создать легкорастворимые фотоэлементы, которые могут наноситься на любой приспособленный для этого материал. Комплекс из 20 таких элементов производит электроэнергию напряжением 8 вольт, которую исследователи использовали для работы датчиков из нанотрубок, предназначенных для обнаружения опасных химикатов.
Кроме того, американская компания New Energy Technologies недавно представила протестированную Университетом Южной Флориды разработку «Солнечных окон» (“SolarWindow”). Эта напыленная на стеклянную поверхность солнечная панель, по утверждению разработчиков, способна производить электроэнергию даже из искусственного света внутри помещений. Для ее создания использовались все те же крошечные солнечные элементы, разработанные Цзян Сяомэй.
Завод по производству напыляемых солнечных элементов в Австралии
Исследователи Австралийского национального университета совместно с представителями компаний Spark Solar Australia и Braggone Oy работают над трехлетним проектом по разработке дешевых и высокоэффективных напыляемых солнечных панелей. Традиционно фотоэлементы изготавливаются из кремния, покрытого тонким противоотражающим слоем нитрата кремния. Дороговизна их производства объясняется, в частности, необходимостью проведения процесса в условиях вакуума. Новый метод использует напыляемую водородную пленку и напыляемую же противоотражающую пленку (вакуум при этом не нужен). Солнечные элементы проходят через конвейер, где и происходит напыление пленок. Этот упрощенный метод позволит средних размеров заводу сэкономить на капитальном оборудовании до $ 5 млн., т.е. выпускаемые солнечные панели окажутся в итоге намного более дешевыми.
Основанный Spark Solar «солнечный» завод станет самым крупным поставщиком солнечных элементов в Южном полушарии. Будущее месторасположение его все еще уточняется (рассматриваются варианты Аделаиды, Джилонга, Воллонгонга, Квенбейана, и Канберры). Первые солнечные элементы были выпущены уже в конце 2010 года, в целом же предполагаемый годичный объем производимой продукции составит более 10 миллионов фотоэлементов, при этом доходы от экспорта ожидаются на уровне 135 млн. австралийских долларов в год.
Напыляемые солнечные элементы – новые возможности для окон эко-домов
Норвежская компания EnSol AS совместно с командой ученых Лестерского университета разработала запатентованную конструкцию солнечного элемента, в которой используются металлические частицы диаметром около 10 нанометров. Это свое изобретение ученые планируют использовать для превращения в солнечные электрогенераторы самолетов и зданий (в том числе окон). Наносить «краску» из новых тонкопленочных фотоэлементов можно будет на любую плоскую поверхность.
Предлагаемая технология была опробована, но все еще дорабатывается. Прежде чем выпустить ее на рынок в к 2016 году, разработчики надеются повысить эффективность изобретения до 20%. Так или иначе, покрытый тонкой прозрачной пленкой фотоэлементов материал от EnSol уже показал себя лучше, чем многие из существующих и параллельно разрабатываемых конкурентами технологий.
Итак, подводя итоги
Тот факт, что «солнечный» материал может использоваться в виде напыляемой краски, существенно расширяет возможности создания «мобильного» электричества.
Небо, затянутое тучами, работе «солнечной краске» не помеха, так как напыляемые фотоэлементы способны улавливать не только ультрафиолет, но и инфракрасное солнечное излучение.
Покрытие транспортного средства подобным материалом сможет, теоретически, обеспечить постоянную подзарядку батарей.
Еще больше электроэнергии будет вырабатываться при нанесении его на поверхность крыш и/или окон. Кроме того, подобные солнечные элементы будут лучше выдерживать непогоду, чем большинство нынешних хрупких солнечных коллекторов.
Однако
Поскольку эффективность фотоэлементов зависит от степени поглощения солнечного света, пользователям придется периодически очищать «покрашенные» солнечной «краской» стены и крыши. Работы Австралийского национального университета, касающиеся возможности использования напяемых солнечных панелей в помещении, продолжаются, завершение их запланировано на конец 2011 года.
Остается открытым вопрос эффективности затрат (исследования в данном направлении стоят недешево).
И наконец, последнее ограничение связано с сырьем – комбинация медь-индий-галлий-селенид стоит дорого и не является широкодоступной.
Так или иначе, у исследователей остается широкое поле для исследований и экспериментов. А у нас – надежда увидеть и приобрести когда-нибудь кажущуюся пока невероятной «солнечную краску».
Источник
Устройство солнечной батареи. Виды солнечных панелей
Состав и устройство солнечной батареи, ее элементов определяют эффективность выработки энергии готовым изделием. В настоящее время, для генерации электрической энергии используются солнечные панели на основе кремния (с-Si, mc-Si & кремниевые тонкопленочные батареи), теллурида кадмия CdTe, соединения медь-индий (галлий)-селен Cu(InGa)Se2, а также концентраторные батареи на основе арсенида галлия (GaAs). Ниже будут даны краткие описания каждой из них.
Солнечные батареи основе кремния
Солнечные батареи (СБ) на основе кремния составляют на сегодняшний день порядка 85% всех выпускаемых солнечных панелей. Исторически это обусловлено тем, что при производстве СБ на основе кремния использовался обширный технологический задел и инфраструктура микроэлектронной промышленности, основной «рабочей лошадкой» которой также является кремний. В результате, многие ключевые технологии микроэлектронной промышленности такие как выращивания кремния, нанесения покрытий, легирования, удалось адаптировать для производства кремниевых батарей с минимальными изменениями и инвестициями. Кроме того, кремний – один из самых распространенных элементов земной коры и составляет по разным данным 27-29% по массе. Таким образом, нет никаких физических ограничений для производства значительной доли электроэнергии Земли с имеющимися запасами Si.
Различают два основных типа кремниевых СБ – на основе монокристаллического кремния (crystalline-Si, c-Si) и на основе мультикристаллического (multicrystalline-Si, mc-Si) или поликристаллического. В первом случае используется высококачественный (и, соответственно, более дорогой) кремний выращенный по методу Чохральского, который является стандартным методом для получения кремниевых пластин-заготовок для производства микропроцессоров и микросхем. Эффективность СБ изготовленных из монокристаллического кремния составляет обычно 19-22%. Не так давно, фирма Panasonic заявила о начале промышленного выпуска СБ с эффективностью 24,5% (что вплотную приближается к максимально возможному теоретически значению
Во втором случае для производства СБ используется более дешевый кремний произведенный по методу направленной кристаллизации в тигле (block-cast), специально разработанного для производства СБ. Получаемые в результате кремниевые пластины состоят из множества мелких разнонаправленных кристаллитов (типичные размеры 1-10мм) разделенных границами зерен. Подобные неидеальности кристаллической структуры (дефекты) приводят к снижению эффективности – типичные значения эффективности СБ из mc-Si составляют 14-18%. Снижение эффективности данных СБ компенсируется их меньшей ценой, так что цена за один ватт произведенной электроэнергии оказывается примерно одинаковой для солнечных панелей как на основе c-Siтак и mc-Si.
Тонкопленочные солнечные панели
Возникает вопрос – зачем разрабатывать другие типы модулей, если солнечные панели на основе моно- и мультикристаллического кремния уже созданы и показывают неплохие результаты? Очевидный ответ — чтобы добиться еще большего снижения стоимости и улучшения технологичности и эффективности, по сравнению с обычными c-Si и mc-Siсолнечными батареями.
Дело в том, что обычные кремниевые фотоэлектрические модули наряду с преимуществами, перечисленными выше, обладают и рядом недостатков. Кемний из-за своих особых электрофизических свойств (непрямозонный полупроводник) обладает довольно низким коэффициентом поглощения, особенно в области инфракрасных длин волн. Таким образом, толщина кремниевой пластины для эффективного поглощения солнечного излучения должна составлять довольно внушительные 100-300 мкм. Более толстые пластины означают больший расход материала, что ведет к удорожанию СБ.
В то же время, прямозонные полупроводники на вроде GaAs, CdTe, Cu(InGa)Se2, и даже некоторые модифицированные формы Si, способны поглощать требуемое количество солнечной энергии при толщине всего в несколько микрон. Открывается заманчивая перспектива сэкономить на расходных материалах, а также на электроэнергии, которой требуется значительно меньше для изготовления более тонкого слоя полупроводника. Еще одной положительной чертой СБ на основе вышеназванных полупроводников – в отличие от СБ на основе c-Si и mc-Si– является их способность не снижать эффективность преобразования солнечной энергии в электрическую даже в условиях рассеянного излучения (облачный день или в тени).
Исследования СБ на основе теллурида кадмия (CdTe) начались еще в 1970х годах ввиду их потенциального использования в качестве перспективных для космических аппаратов. А первое широкое применение «на земле» подобные СБ нашли в качестве элементов питания карманных микрокалькуляторов.
Данные элементы представляют собой гетероструктуру из тонких слоев p-CdTe / n-CdS (суммарная толщина 2-8 мкм) напыленных на стеклянную подложку (основу). Эффективность современных фотоэлектрических элементов данного типа равняется 15-17%. Основным (и фактически единственным) производителем СБ на основе теллурида кадмия является американская фирма FirstSolar, которая занимает 4-5% всего рынка.
К сожалению, есть проблемы с обоими элементами входящими в состав соединения CdTe. Кадмий – это экологически вредный тяжелый метал, который требует особых методов обращения и ставит сложный вопросутилизации старых изделий. В виду этого, законодательство многих стран ограничивает свободную продажу гражданам СБ этого типа (строятся только масштабных солнечных электростанций под гарантии утилизации от фирмы производителя). Второй элемент – теллур, довольно редко встречается в земной коре. Уже в настоящее время более половины всего добываемого теллура идет на изготовление солнечных панелей, а перспективы нарастить добычу – довольно призрачны.
Солнечные батареи на основе соединения медь-индий (галлий)-селен Cu(InGa)Se2 (иногда обозначаются как CIGS) являются новичками на рынке солнечной энергетики. Несмотря на то, что начало исследований элементов этого типа было положено еще в середине 70х, в настоящее время коммерческий выпуск в боле-менее солидных масштабах ведет всего лишь фирма SolarFrontierKKиз Японии. Отчасти это связано с технически сложным и дорогим процессом изготовления, хотя в некоторых (удачных!) случаях их эффективность может достигать 20%.
Несмотря на отсутствие экологически вредных элементов в составе этого соединения, значительному расширению производства данных солнечных модулей в будущем угрожает дефицит индия. Ведутся исследования с целью заменить дорогой In на более дешевые элементы и может быть скоро появятся новые изделия на основе соединения Cu2ZnSn(S,Se)4.
Фотоэлектрические модули на основе аморфного кремния a-Si:H. Тонкопленочные солнечные батареи могут быть построены также и на основе хорошо известного кремния, если удастся каким-либо образом улучшить его способности к поглощению солнечного света. Применяются две основные методики:
— увеличить путь прохождения фотонов посредством многократного внутреннего переотражения;
— использовать аморфный кремний (a-Si), обладающий гораздо большим коэффициентом поглощения чем обычный кристаллический кремний (с-Si).
По первому пути пошла австралийская фирма CSGSolarLtd, разработавшая СБ с эффективностью 10-13% при толщине слоя кремния всего 1,5 мкм. По второму – швейцарская OerlikonSolar (которую сейчас перекупили японцы), создавшая комбинированные солнечные панели на основе слоев аморфного и кристаллического кремния a-Si / с-Si эффективность которых также составляет 11-13%. Своеобразной особенностью СБ из аморфного кремния является снижение эффективности их работы при понижении температуры окружающего воздуха (у всех остальных — наоборот). Так, фирма производитель рекомендует устанавливать данные модули в странах с жарким климатом.
Концентраторные солнечные модули
Наиболее совершенные и самые дорогие на сегодняшний день солнечные модули обладают эффективностью фотоэлектрического преобразования до 44%. Они представляют собой многослойные структуры из разных полупроводников последовательно выращенных друг на друге слой за слоем. Наиболее успешной является структура состоящая из трех слоев: Ge (нижний полупроводник и подложка), GaAsи GaInP. Благодаря тому, что в подобной комбинации каждый отдельный полупроводниковый слой поглощает наиболее эффективно свой определенный диапазон солнечного спектра (определяемый шириной запрещенной зоны полупроводника), достигается наиболее полное поглощение солнечного света во всем диапазоне длин волн, недостижимое для СБ состоящих из одного типа полупроводника. К сожалению, процесс изготовления подобных многослойных полупроводниковых слоев очень сложен технически и, как следствие, весьма дорог.
Если солнечные батареи стоят очень дорого, фокусировка солнечного излучения на меньшей площади СБ может применяться как эффективный способ снижения финансовых затрат. Например, собрав при помощи линзы солнечный свет с 10 см2 и сфокусировав его на 1 см2 солнечной батареи, можно получить тоже количество электроэнергии, что и от элемента площадью 10 см2 без концентратора, но экономя при этом целых 90% площади! Но при этом, набор подобных ячеек (солнечная батарея + линза) должен быть смонтирован на подвижной механической системе, которая будет ориентировать оптику в направлении солнца в то время как оно движется по небу в течении дня, что увеличивает стоимость системы.
В настоящее время экономически оправдано использовать подобные дорогие концентраторные солнечные модули только в тех странах и регионах земного шара, где круглый год имеется в достатке прямое солнечное излучение (рассеянное излучение не может быть сфокусировано линзой). Так, французская фирма-производитель концентраторных СБ SOITEC устанавливает свои СБ в Калифорнии, ЮАР, на юге Франции (Прованс), в Испании.
Органические солнечные батареи и модули фотосенсибилизованные красителем
Но есть и новый тип тонкопленочных солнечных батарей, такой как сенсибилизированные красителем солнечные элементы, которые работают на совершенно ином принципе, чем все модули рассмотренные выше, на принципе больше напоминающем фотосинтез у растений. Но их пока нет в коммерческой продаже.
Источник