Что означает кпд солнечной батареи

КПД солнечных батарей — обзор самых эффективных модулей

Обновлено: 7 января 2021

КПД у разных типов солнечных панелей

Существует несколько разновидностей солнечных модулей, которые изготавливаются по собственным технологиям и обладают определенными параметрами. КПД солнечных панелей определяет их способность преобразовать солнечную энергию в электрический ток. Расчет производится путем деления мощности энергии, вырабатываемой панелью, на мощность потока света, падающего на рабочую поверхность.

Показатели панелей изначально определялись при стандартных лабораторных условиях (STS):

  • уровень инсоляции — 1000 вт/ м2
  • температура — 25°

Большинство современных производителей производят тестирование каждой собранной батареи и прилагают результаты к документации при продаже. Это дает более полную и корректную информацию о каждой панели, поскольку в процессе изготовления возможны некоторые отклонения от технологических нормативов. Поэтому сравнение любых двух (или более) панелей всегда выявляет небольшое расхождение демонстрируемых параметров.

Практически любые отклонения в первую очередь отражаются на эффективности, т. е. на КПД солнечной батареи. Из-за этого все разновидности не имеют четко определенного значения. Обычно указывают довольно широкий диапазон, который может давать заметную разницу параметров солнечных модулей, изготовленных по одинаковой технологии.

Читайте также:  Солнечные батареи не практичный

Все виды фотоэлементов обладают определенными свойствами, определяющими эффективность солнечных батарей. Каждая разновидность имеет свои пределы возможностей, обусловленные строением и составом полупроводников.

Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%

Научно-исследовательская группа Helmholtz-Zentrum Berlin (HZB) описала в журнале Science разработку тандемного солнечного элемента из перовскита и кремния. Его КПД составил 29,15%. На текущий момент — это новый мировой рекорд. Предыдущие показатели КПД были в районе 28%. Исследователи планируют довести эффективность тандемного солнечного элемента до 30% и даже превысить этот показатель.

Для солнечных элементов базовым материалом является кремний, а разработки с использованием перовскита (титаната кальция) ведутся параллельно. Ученые думают, что возможности перовскита еще не раскрыты и используя оба материала, они получают прирост эффективности.

Солнечные элементы, состоящие из двух полупроводников с различной шириной запрещенной зоны, способны демонстрировать высокую эффективность по сравнению с отдельными элементами, так как тандемные элементы полнее используют солнечный спектр. В частности, обычные кремниевые солнечные элементы главным образом эффективно преобразуют в электрическую энергию инфракрасную часть солнечного спектра, в то время как соединения перовскита могут эффективно преобразовывать видимую часть спектра, повышая КРД тандема.
Использование перовскита и кремния не увеличивает стоимость солнечных панелей.

Виды солнечных фотоэлементов и их КПД

Существуют разные виды солнечных батарей:

  • кремниевые
  • теллур-кадмиевые
  • из арсенида галлия
  • из селенида индия
  • полимерные
  • органические
  • комбинированные, многослойные

Самые эффективные солнечные панели из тех, что находятся в серийном производстве — кремниевые.

Их выпускают в двух видах:

  • монокристаллические. Изготавливаются из тонких пластинок, срезанных с цельного (монолитного) кристалла кремния. Считается, что это — лучшие солнечные панели, демонстрирующие КПД от 17 до 22 %
  • поликристаллические. Заготовкой для этих элементов является брикет кремния, который был расплавлен и разлит по формам. Такие панели обладают немного сниженными показателями по всем позициям, чем монокристаллические. Их КПД находится в диапазоне 12-17 %

Есть еще одни современные солнечные батареи с высоким КПД — это панели на основе селенид-индия. Они способны выдать КПД 15-20 %. Несколько меньшими качествами обладают элементы из теллурида кадмия — не более 10-12 %.

Остальные виды значительно уступают лидерам — аморфные и полимерные элементы демонстрируют КПД не более 5-6 %. Необходимо учитывать, что приведенные показатели — усредненные. У разных производителей есть образцы, превышающие обычные нормы эффективности. Это не меняет общей картины, но демонстрирует необходимость совершенствования технологий, разработки новых методов производства фотоэлементов.

От чего зависит эффективность?

КПД солнечных фотоэлектрических установок составляет лишь малую часть от теоретически возможных показателей. Расчетный КПД доходит до 80-87 %, но изъяны технологии, недостаточная чистота материалов и неточность сборки элементов существенно снижают эти значения. Основная проблема кремниевых элементов заключается в способности поглощать лучи только инфракрасного спектра, а энергия ультрафиолетовых участков остается неиспользованной.

Проблема состоит в дороговизне процессов очистки, выращивания кристаллов и прочих тонких процедур, без которых ожидаемого эффекта не удастся добиться. Все солнечные панели с высоким КПД отличаются высокой стоимостью, что делает их недоступными для массового пользователя.

Необходимо учитывать также погодные и климатические условия. Самая производительная система не сможет демонстрировать высокие результаты, если источник энергии скрыт за тучами, или находится низко над горизонтом. Этот фактор не подлежит регулированию, единственным способом борьбы с ним может стать повышенная эффективность солнечных панелей.

Некоторые разновидности фотоэлементов способны вполне стабильно вырабатывать энергию в пасмурную погоду, например, тонкопленочные виды. Однако, их производительность невысока и не дает нужного количества энергии. Чем выше КПД батарей, тем сильнее падает количество вырабатываемой энергии при появлении облачности.

Ежегодно появляются заявления от различных компаний или групп ученых о разработке высокоэффективных образцов солнечных панелей, стабильно работающих в сложных условиях. Однако, в продаже до сих пор есть только привычные кремниевые или пленочные разновидности, а новинок не видно. Причиной этого является слишком высокая себестоимость производства и нестабильность результатов технологий, вынуждающие изготовителей пока отказываться от недоработанных новшеств.

Срок службы и окупаемость

Большинство солнечных панелей способны работать по 25 лет и более. Однако, первоначальные характеристики со временем ухудшаются, происходит падение производительности и, как следствие, уменьшение КПД. Факторы, влияющие не длительность эксплуатации фотоэлементов:

  • тип конструкции. Чем выше изначальная производительность, тем более высокие результаты панель будет показывать после многолетней службы
  • условия эксплуатации. В регионах с сильными среднесуточными и среднегодовыми перепадами температур ресурс панелей быстро уменьшается. Происходит физический износ полупроводников, нарушается прочность соединения слоев, образующих p-n переход. Все эти факторы отрицательно влияют на КПД солнечных модулей

Окупаемость панелей в первую очередь зависит от инсоляции — количества солнечной энергии, доступной фотоэлементам. Здесь необходимо учитывать следующие факторы:

  • продолжительность светового дня
  • положение солнца над горизонтом
  • погодные условия в регионе

Практика показывает, что средний процент деградации солнечных батарей составляет 0,6 % в год. Однако, к естественным процессам прибавляются внешние воздействия — температурные, механические и т.п. Поэтому производители обычно гарантируют, что в течение 10 лет эксплуатации производительность не упадет больше, чем на 10 %.

Вопрос окупаемости солнечных панелей всерьез никем не рассматривается. Существуют приблизительные расчеты, показывающие количество выработанной энергии и ее среднюю стоимость в течение 10, 25 лет. Эти данные не способны показать реальной картины, поскольку все комплексы работают в собственных условиях, подвергаются тем или иным воздействиям и не могут гарантировать заданной производительности.

Специалисты утверждают, что для некоторых регионов окупаемость солнечных батарей никогда не наступает, в других местностях она составляет около 10 или 15 лет.

Подробные исследования не производятся, или ведутся только для данного района. Если необходимо узнать технико-экономические показатели СЭС, приходится каждый раз производить индивидуальный расчет для данных условий, моделей солнечных модулей и прочих факторов воздействия.

Самые эффективные солнечные батареи

Обычный пользователь не старается глубоко вникнуть в теорию, поэтому он чаще всего задает вопрос — хочу купить солнечные панели, какие лучше? Вопрос простой, но ответить на него однозначно крайне сложно. Все зависит от возможностей и потребностей покупателя.

Споры о том, какие солнечные батареи самые эффективные ведутся с самого начала их использования. Несмотря на приоритет кристаллических кремниевых конструкций, нередко впереди оказываются другие виды панелей. Есть рекордсмены в этой области, например, фирма Sharp объявила о создании панелей с КПД 44 %. Эта же фирма создала модули с эффективностью 37,9 %. Есть образцы от других разработчиков с КПД около 32 %. Все эти модели весьма дороги и в массовое производство пока не поступают. Нерентабельность — основная проблема развития солнечных модулей.

Исследования и разработки для повышения КПД

Наиболее перспективным направлением исследований считается создание многослойных панелей. Основной упор делается на возможность получения энергии от инфракрасных и ультрафиолетовых лучей, которые во многом более активны, чем видимые части спектра. Работы ведутся и в области очистки кремниевых структур, создания наиболее однородных и чистых кристаллов.

Еще одним направлением является создание максимально плотных и ровных соединений полупроводников. Электрический ток возникает на границе двух материалов, и, если поверхность обоих изобилует впадинами и прочими изъянами, эти участки исключаются из общей рабочей зоны. Проблема технически сложная, поскольку речь идет о микронной точности шлифовки. Для промышленного производства эти методики пока слишком сложны, а цены на панели будут недоступны рядовым покупателям. Процесс исследований происходит непрерывно, поэтому ожидать положительных сдвигов можно в любой момент.

Видео-инструкция по сборке своими руками

Источник

От чего зависит КПД солнечных батарей и как увеличить этот показатель

Современные исследователи, которые занимаются гелиосистемами, постоянно ведут между собой дискуссии о КПД солнечных батарей. Это один из главных критериев, на основании которого оцениваются их эффективность и уровень производительности. Поскольку затраты на преобразование энергии Солнца в электрическую у панелей по-прежнему велики, производители беспокоятся о том, как сделать их КПД выше.

Известно, что на 1м² площади элементов вырабатывается около 20% от общей мощности излучения Солнца, которое попадает на батарею. При этом речь идет о самых благоприятных условиях климата и погоды, которые бывают далеко не всегда. Следовательно, для увеличения показателя нужно установить много солнечных батарей. Это не всегда бывает удобно, да и по стоимости влетает в «копеечку». Поэтому нужно понимать, насколько целесообразно использование этих альтернативных источников энергии и какие перспективы имеются в дальнейшем.

Что такое КПД

Итак, КПД батареи — это количество реально вырабатываемого ею потенциала, обозначаемое в процентах. Для его вычисления необходимо мощность электрической энергии разделить на мощность энергии Солнца, попадающей на поверхность солнечных панелей.

Сейчас этот показатель находится в пределах от 12 до 25%. Хотя на практике, учитывая погодные и климатические условия, он не поднимается выше 15. Причиной тому являются материалы, из которых производят солнечные аккумуляторы. Кремний, который представляет собой основное «сырье» для их изготовления, не обладает способностью поглощения УФ-спектра и может работать только с инфракрасным излучением. К сожалению, из-за такого недостатка мы теряем энергию УФ-спектра и не применяем ее с пользой.

Взаимосвязь КПД с материалами и технологиями

Как работают солнечные батареи? По принципу свойств полупроводников. Свет, который падает на них, производит выбивание своими частицами электронов, находящихся на внешней орбите атомов. Большое количество электронов создает потенциал электрического тока — при замкнутых условиях цепи.

Чтобы обеспечить нормальный показатель мощности, одного модуля будет мало. Чем больше панелей, тем эффективней работа радиаторов, отдающих электроэнергию аккумуляторам, где она будет накапливаться. Именно по этой причине эффективность солнечных батарей зависит и от количества устанавливаемых модулей . Чем их больше, тем больше энергии Солнца они поглощают, а показатель мощности у них становится на порядок выше.

Можно ли повысить КПД батареи? Такие попытки были предприняты их создателями, и не один раз. Выходом из положения в будущем может стать производство элементов, состоящих из нескольких материалов и их слоев. Материалы следуют таким образом, чтобы модули могли вбирать в себя разные типы энергии.

Например, если одно вещество работает с УФ-спектром, а другое — с инфракрасным, КПД солнечных батарей в разы повышается. Если мыслить на уровне теории, то наивысшим коэффициентом полезного действия может стать показатель около 90%.

Также на КПД любой гелиосистемы большое влияние оказывает и разновидность кремния. Его атомы можно получить несколькими путями, и все панели, исходя из этого, делятся на три разновидности:

  • монокристаллы;
  • поликристаллы;
  • элементы из аморфного кремния.

Из монокристаллов производят солнечные батареи, КПД которых составляет около 20%. Они стоят дорого, так как эффективность у них самая высокая. Поликристаллы по стоимости гораздо ниже, так как в данном случае качество их работы напрямую зависит от чистоты кремния, используемого при их изготовлении.

Элементы, в основе которых находится аморфный кремний, стали основой для производства тонкопленочных гибких солнечных панелей. Технология их изготовления гораздо проще, стоимость ниже, но и КПД меньше — не более 6%. Они быстро изнашиваются. Поэтому для улучшения срока их службы в них добавляются селен, галлий, индий.

Как сделать работу солнечной панели максимально эффективной

Производительность любой гелиосистемы зависит от:

  • температурных показателей;
  • угла падения лучей Солнца;
  • состояния поверхности (она всегда должна быть чистой);
  • погодных условий;
  • наличия или отсутствия тени.

Оптимальный угол падения лучей Солнца на панель — 90°, то есть прямой. Уже существуют гелиосистемы, оснащенные уникальными устройствами. Они позволяют следить за положением светила в пространстве. Когда положение Солнца по отношению к Земле изменяется, меняется и угол наклона гелиосистемы.

Постоянный нагрев элементов тоже не лучшим образом сказывается на их производительности. Когда энергия преобразуется, возникают ее серьезные потери. Поэтому между гелиосистемой и поверхностью, на которую она монтируется, всегда нужно оставлять небольшое пространство . Воздушные потоки, проходящие в нем, будут служить природным способом охлаждения.

Чистота солнечных батарей — тоже немаловажный фактор влияющий на их КПД. Если они сильно загрязнены, они собирают меньше света, а значит, их эффективность снижается.

Также и правильная установка играет большую роль. Нельзя при монтировании системы допускать, чтобы на нее падала тень. Лучшая сторона, на которой их рекомендуется устанавливать — южная.

Переходя к погодным условиям, можно заодно ответить на популярный вопрос о том, работают ли солнечные батареи в пасмурную погоду. Безусловно, работа их продолжается, потому что электромагнитное излучение, исходящее от Солнца, попадает на Землю во все времена года. Конечно, производительность панелей (КПД) будет значительно меньше, особенно в регионах с обилием дождливых и пасмурных дней в году. Другими словами, электроэнергию они вырабатывать будут, но в гораздо меньшем количестве, чем в регионах с солнечным и жарким климатом.

Немного о батареях-чемпионах по КПД

Рекордсменом по коэффициенту полезного действия в гелиосистемах на данный момент считаются немецкие батареи. Они созданы в Институте гелиоэнергетики им. Фраунгофера. В их основу положены фотоэлементы, состоящие из нескольких слоев. Компания «Сойтек» активно внедряет их в сферу широкого потребления, начиная уже с 2005 года.

Сами элементы — не более 4 мм толщиной, а солнечный свет фокусируется на их поверхности с помощью специальных линз. Благодаря им осуществляется преобразование световых частиц в электроэнергию, а КПД при этом составляет целых 47%.

Второе место заслуженно занимают панели, созданные путем применения фотоэлементов из трех слоев фирмы «Шарп» . Это тоже солнечные батареи с высоким КПД, хотя и немного меньше — 44%.

Три слоя представлены тремя веществами: фосфидом индия (галлия), арсенидом галлия и арсенидом индия (галлия). Между ними располагается диэлектрическая прослойка, применяемая для того, чтобы получить туннельный эффект. Что касается фокусировки света, ее получают путем применения известной линзы Френеля. Концентрация света достигается до уровня в 302 раза, а далее попадает в трехслойный полупроводниковый преобразователь.

Безусловно, подобный рекорд КПД едва ли может быть доступен широкому кругу потребителей. Кстати, Илон Маск, известный американский миллиардер, является владельцем компании «Солар Сити» . Не так давно, в 2015 году, компания Маска разработала именно «потребительский» вариант солнечных батарей с коэффициентом полезного действия, превышающим 22%.

Разработки и многочисленные лабораторные опыты проводятся и по сей день. Можно быть уверенными в том, что такие технологии имеют большое будущее — в качестве экологичного альтернативного источника энергии.

Источник

Оцените статью