Что означает буферный аккумулятор

Содержание
  1. БУФЕРНАЯ БАТАРЕЯ
  2. Смотреть что такое «БУФЕРНАЯ БАТАРЕЯ» в других словарях:
  3. Буферная батарея
  4. Смотреть что такое «Буферная батарея» в других словарях:
  5. Циклический и буферный режимы работы акб
  6. Буферный режим
  7. Циклический режим
  8. Что означает буферный аккумулятор
  9. Буферные емкости и их применение в системах отопления с твердотопливными котлами.
  10. Циклический режим работы аккумуляторных батарей
  11. Что из себя представляет буферная емкость для твердотопливного котла
  12. Для чего нужна и насколько она эффективна
  13. Устройство и принцип работы
  14. Типы конструкций
  15. Буферное зарядное устройство свинцовых аккумуляторов
  16. Отзывы о бытовых теплоаккумуляторах для котлов: преимущества и недостатки
  17. Функционирование теплоаккумулятора в отоплении
  18. Как выбрать буферную емкость
  19. Расчет минимально необходимого объема
  20. Калькулятор расчета минимально необходимой емкости теплоаккумулятора
  21. Количество теплообменников
  22. Максимально допустимое давление
  23. Материал внутренней емкости
  24. Другие критерии выбора
  25. Сборка теплоаккумулятора своими руками
  26. Лучшие известные производители и модели: характеристики и цены
  27. Sunsystem PS 200
  28. Hajdu AQ PT 500 C
  29. S-TANK AT PRESTIGE 300
  30. ACV (АЦВ) LCA 750 1 CO TP
  31. Популярные модели баков
  32. Цены: итоговая таблица
  33. Схемы обвязки и подключения
  34. Как подобрать теплоаккумулятор для твердотопливного котла

БУФЕРНАЯ БАТАРЕЯ

аккумуляторная батарея, включённая параллельно с генератором пост. тока или выпрямит. устройством для питания потребителей при уменьшении мощности генератора, а также с целью снижения колебаний напряжения и тока в цепи. Названа по аналогии с механич. буфером, т. к. первоначально Б. б. предназначалась для частичной компенсации мощности, отдаваемой электрич. станцией в периоды Макс. нагрузок. Б. б. часто используют в качестве резерва (в режиме непрерывной буферной работы с пост. подзарядом) при прекращении работы осн. источников питания, например в устройствах связи, на КА в сочетании с солнечными батареями. В режиме Б. б. работают также аккумуляторные батареи, применяемые на авто- и ж.-д. транспорте, когда при снижении скорости движения ниже определ. предела генератор автоматически от

Читайте также:  Как проверить емкость свинцового аккумулятора

Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое «БУФЕРНАЯ БАТАРЕЯ» в других словарях:

буферная батарея — Аккумуляторная батарея, включенная параллельно с основным источником постоянного тока с целью уменьшения отклонения значения напряжения и тока в цепи потребителя. [ГОСТ 15596 82] буферная батарея Батарея, соединенная параллельно с источником… … Справочник технического переводчика

БУФЕРНАЯ БАТАРЕЯ — электр. батарея, присоединяемая параллельно к основному источнику электр. тока и состоящая обычно из аккумуляторов. Б. б. служит для сглаживания пульсаций тока, к рые дает основной источник (динамомашина или сеть переменного тока, включенная… … Технический железнодорожный словарь

Буферная батарея — 87. Буферная батарея Аккумуляторная батарея, включенная параллельно с основным источником постоянного тока с целью уменьшения отклонения значения напряжения и тока в цепи потребителя Источник: ГОСТ 15596 82: Источники тока химические. Термины и… … Словарь-справочник терминов нормативно-технической документации

буферная батарея — tarpinė baterija statusas T sritis radioelektronika atitikmenys: angl. buffer battery; spacing battery vok. Pufferbatterie, f rus. буферная батарея, f pranc. batterie tampon, f … Radioelektronikos terminų žodynas

Буферная батарея — аккумуляторная батарея, включенная параллельно с генератором постоянного тока или выпрямительным устройством для совместного питания нагрузки. Названа по аналогии с механическим буфером, так как первоначально Б. б. предназначалась для… … Большая советская энциклопедия

буферная батарея с постоянным подзарядом — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN floating battery … Справочник технического переводчика

Батарея буферная — Буферная батарея (buffer battery) батарея, соединенная параллельно с источником постоянного тока, чтобы уменьшить влияние колебаний мощности источника. Источник: ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ СТАЦИОНАРНЫХ СВИНЦОВО КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ… … Официальная терминология

буферная аккумуляторная батарея — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN floating battery … Справочник технического переводчика

буферная система питания — буферная установка питания Система [установка] питания, в состав резервной цепи которой входит батарея, выводы которой постоянно соединены с нагрузкой [ОСТ 45.55 99] Тематики источники и системы электропитания … Справочник технического переводчика

ГОСТ 15596-82: Источники тока химические. Термины и определения — Терминология ГОСТ 15596 82: Источники тока химические. Термины и определения оригинал документа: 8. Аккумулятор Akkumulator Гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда… … Словарь-справочник терминов нормативно-технической документации

Источник

Буферная батарея

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Буферная батарея» в других словарях:

буферная батарея — Аккумуляторная батарея, включенная параллельно с основным источником постоянного тока с целью уменьшения отклонения значения напряжения и тока в цепи потребителя. [ГОСТ 15596 82] буферная батарея Батарея, соединенная параллельно с источником… … Справочник технического переводчика

БУФЕРНАЯ БАТАРЕЯ — электр. батарея, присоединяемая параллельно к основному источнику электр. тока и состоящая обычно из аккумуляторов. Б. б. служит для сглаживания пульсаций тока, к рые дает основной источник (динамомашина или сеть переменного тока, включенная… … Технический железнодорожный словарь

Буферная батарея — 87. Буферная батарея Аккумуляторная батарея, включенная параллельно с основным источником постоянного тока с целью уменьшения отклонения значения напряжения и тока в цепи потребителя Источник: ГОСТ 15596 82: Источники тока химические. Термины и… … Словарь-справочник терминов нормативно-технической документации

буферная батарея — tarpinė baterija statusas T sritis radioelektronika atitikmenys: angl. buffer battery; spacing battery vok. Pufferbatterie, f rus. буферная батарея, f pranc. batterie tampon, f … Radioelektronikos terminų žodynas

БУФЕРНАЯ БАТАРЕЯ — аккумуляторная батарея, включённая параллельно с генератором пост. тока или выпрямит. устройством для питания потребителей при уменьшении мощности генератора, а также с целью снижения колебаний напряжения и тока в цепи. Названа по аналогии с… … Большой энциклопедический политехнический словарь

буферная батарея с постоянным подзарядом — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN floating battery … Справочник технического переводчика

Батарея буферная — Буферная батарея (buffer battery) батарея, соединенная параллельно с источником постоянного тока, чтобы уменьшить влияние колебаний мощности источника. Источник: ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ СТАЦИОНАРНЫХ СВИНЦОВО КИСЛОТНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ… … Официальная терминология

буферная аккумуляторная батарея — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN floating battery … Справочник технического переводчика

буферная система питания — буферная установка питания Система [установка] питания, в состав резервной цепи которой входит батарея, выводы которой постоянно соединены с нагрузкой [ОСТ 45.55 99] Тематики источники и системы электропитания … Справочник технического переводчика

ГОСТ 15596-82: Источники тока химические. Термины и определения — Терминология ГОСТ 15596 82: Источники тока химические. Термины и определения оригинал документа: 8. Аккумулятор Akkumulator Гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда… … Словарь-справочник терминов нормативно-технической документации

Источник

Циклический и буферный режимы работы акб

Буферный режим

Буферный режим работы аккумуляторных батарей является самым «любимым» — батарея находится на постоянной подзарядке и очень редко получает глубокий разряд. В таком режиме аккумулятор прослужит вам максимально долго.

Примером использования аккумулятора в буферном режиме может быть источник бесперебойного питания: когда присутствует сеть, аккумулятор постоянно держит заряд, а в момент, когда сеть пропадает, аккумулятор начинает отдавать накопленную энергию. В компьютерных источниках бесперебойного питания обычно используют аккумуляторы 12 В ёмкостью от 7 до 26 А-ч, это даёт возможность компьютеру проработать от аккумулятора дополнительных 10-15 минут при отключении электричества.

Сфера применения при буферном режиме:

  • накопители солнечной энергии
  • источники бесперебойного питания (ИБП)
  • системы аварийного освещения
  • лифты
  • пожарные и охранные системы
  • контрольно-кассовые аппараты
  • аварийные системы

Циклический режим

Циклический режим работы является самым «жёстким» для аккумуляторной батареи. В таком режиме её полностью разряжают, потом ставят на зарядку и снова полностью разряжают. Срок службы в таком случае будет зависеть от глубины разряда аккумулятора.

Большинство свинцово-кислотных аккумуляторов AGM-типа имеют циклический ресурс не более 300 циклов 100% разряда, но уже существуют аккумуляторы нового поколения, циклический ресурс которых составляет 600 циклов 100% разряда.

Сфера применения при циклическом режиме:

  • поломоечные машины
  • лодочные моторы
  • электромобили
  • погрузочная техника и т.д.

Источник

Что означает буферный аккумулятор

Режимы работы аккумуляторных батарей: буферный и циклический

Качественная и долговечная работа аккумуляторной батареи это не только положительный экономический эффект для владельца, но и приятная составляющая эксплуатации. Согласитесь, отказ в работе аккумуляторной батареи в первые 2-3 года эксплуатации и отказ работы батареи на 7-10 году эксплуатации вызывают противоположные эмоции.

Важными эксплуатационными характеристиками являются: температурный режим работы (+10..+25 град.Цельсия) и правильно выбранный режим эксплуатации и подобранный под этот режим работы метод заряда. Стоит отметить, что мы разберем варианты и режимы работы аккумуляторных батарей, которые применяются в ИБП, а в следующей статье разберем как правильно зарядить аккумуляторы в ИБП. Аккумуляторы для ИБП это, как правило, свинцово- кислотные необслуживаемые и герметичные, производятся по основным двум технологиям: AGM и GEL (гелевый аккумулятор для ИБП).

Чем определяется долговечность работы аккумуляторной батареи?

Общеизвестным фактом и логичным подтверждением является следующее: срок службы аккумулятора в основном определяется количеством процедур заряд-разряд и его глубина разряда. Другими словами: чем реже мы проводим процедуру разряда аккумулятора и чем менее глубоким этот разряд является – тем дольше прослужит аккумулятор.

Среди утвердившихся у пользователей мифов встречается такой: необходимо периодически разряжать аккумулятор «до нуля» и зарядить его до 100%, в противном случае он испортится. Для аккумуляторных батарей среднего и высшего класса – это останется мифом, а для аккумуляторов низкого качества – этот миф станет инструкцией по эксплуатации. В низкокачественных аккумуляторах отсутствие встряски в виде глубокого разряда и полной зарядки – действительно может повлиять на ресурс его работы. В дешевых аккумуляторах применяются материалы низкого качества (например, свинец-вторсырье) и возникающие в аккумуляторе, из-за этого, внутренние окисления (налет) необходимо каким-то образом убирать. В противовес дешевым, — качественные аккумуляторы нуждаются в постоянном подзаряде (буферный заряд) при котором почти отсутствуют глубокие разряды.

Мы не можем обойти тему «эффекта памяти» в аккумуляторных батареях. Суть эффекта памяти состоит в уменьшении емкости аккумулятора. Потеря емкости в таких аккумуляторах происходит вследствие неполного разряда и последующей зарядки до 100% — аккумулятор «запоминает» уровень неполного разряда и ниже этого «не хочет» разряжаться . Считается, что если «потренировать» аккумулятор методом глубокой разрядки и полной зарядки – емкость частично можно восстановить. Этот эффект может возникать в аккумуляторах изготовленных по нескольким технологиям и полностью отсутствует в аккумуляторных батареях, которые применяются в ИБП. Эффект памяти свойственен аккумуляторам производимым по технологии Никель-металл-гидридный (Ni-MH), Никель-кадмиевый (NiCd), Серебряно-цинковый аккумулятор.

Теперь рассмотрим два режима работы аккумуляторов – буферный и циклический, а также как правильно осуществлять зарядку аккумуляторов в этих режимах.

Работа аккумуляторных батарей в буферном режиме

Буферный режим работы аккумуляторной батареи подразумевает периодический несистемный характер использования. Другими словами – в этом режиме аккумуляторы применяются в аварийных случаях, например в ИБП. В буферном режиме аккумуляторная батарея постоянно подзаряжается специально установленным зарядным напряжением и током и в таком режиме эксплуатации может проработать весь заявленный производителем срок, а иногда и больше. Для буферного режима работы подходят аккумуляторы с небольшим параметром цикличности заряд-разряд, и эти аккумуляторы немного дешевле чем высокоцикличные .

Циклический режим работы аккумуляторной батареи

Циклический режим работы – режим, когда с четкой периодичностью аккумулятор подвергается полному заряду и полному разряду. Примерами такого режима работы являются: электротранспорт, поломоечные машины, электропогрузчики, альтернативная энергетика – все те отрасли, где аккумуляторные батареи имеют постоянную периодичность использования. Циклический режим использования аккумуляторных батарей является для них самым жестким испытанием на прочность. Поэтому перед тем как купить аккумуляторную батарею желательно узнать режим ее работы.

© Материал подготовлен специалистами компании НТС-групп (ТМ Электрокапризам-НЕТ!), 2019год

Источник

Буферные емкости и их применение в системах отопления с твердотопливными котлами.

Циклический режим работы аккумуляторных батарей

При циклическом режиме работы батарею заряжают, а затем отключают от зарядного устройства. Разряд батареи производится по мере необходимости.

В большинстве UPS (не только в on-line UPS) аккумулятор работает в буферном режиме. Однако в некоторых UPS зарядное устройство отключают после полной зарядки аккумулятора — аккумулятор UPS в этом случае ближе к к циклическому режиму работы. Производители декларируют увеличение срока службы аккумуляторов в таких UPS. Буферный режим работы характерен также для систем бесперебойного питания постоянного тока, которые широко применяются для коммуникаций (связи), систем сигнализации, электростанций и других непрерывных производств.

Циклический режим работы аккумуляторных батарей используется при работе различных переносных или перевозимых устройств: электрических фонарей, средств коммуникаций, измерительных приборов.

Производители аккумуляторов иногда указывают в перечне технических характеристик, для какого режима работы предназначен тот или иной аккумулятор. Но в последнее время, большинство герметичных свинцовых кислотных аккумуляторов могут применяться и в буферном и в циклическом режимах.

Что из себя представляет буферная емкость для твердотопливного котла

Буферная емкость (также теплоаккумулятор) – это бак определенного объема наполненный теплоносителем, назначение которого – накапливать излишки тепловой мощности и в дальнейшем более рационально распределять их в целях отопления дома или обеспечения горячего водоснабжения (ГВС).

Для чего нужна и насколько она эффективна

Чаще всего буферная емкость используется при твердотопливных котлах, которые обладают определенной цикличность, при чем это относится и к ТТ котлам длительного горения. После розжига теплоотдача топлива в камере сгорания быстро возрастает и достигает пиковых значений, после чего выработка тепловой энергии угасает, а при затухании, когда новая партия топлива не закладывается, и вовсе прекращается.

Исключением являются лишь бункерные котлоагрегаты с автоматической подачей, где за счет регулярной равномерной подачи топлива, горение происходит с одинаковой теплоотдачей.

При такой цикличности, в период остывания или затухания, тепловой энергии может быть недостаточно для поддержания комфортной температуры в доме. В то же время в период пиковой тепловой мощности температура в доме гораздо выше комфортной, а часть излишнего тепла из камеры сгорания просто вылетает в дымоход, что является не самым эффективным и экономным использованием топлива.


Наглядная схема подключения буферной емкости, отображающая принцип ее работы.

Наиболее понятна эффективность буферного бака на конкретном примере. Один м3 воды (1000 л) при охлаждении на 1°C выделяет 1-1,16 кВт тепла. Возьмем в пример среднестатистический дом с обычной кладкой в 2 кирпича площадью 100 м2, теплопотери которого равны приблизительно 10 кВт. Теплоаккумулятор на 750 л, разогретый несколькими закладками до 80°C и остывший до 40°C, отдаст системе отопления около 30 кВт тепла. Для вышеупомянутого дома это равно 3-м дополнительным часам тепла батарей.

Иногда буферная емкость используется и в сочетании с электрическим котлом, оправдано это при отоплении ночью: по сниженным тарифам на электроэнергию. Однако такая схема редко оправдана, поскольку для накопления за ночь достаточного для дневного обогрева количества тепла необходим бак не на 2 и даже не на 3 тыс. литров.

Устройство и принцип работы

Теплоаккумулятор – герметичный, как правило, вертикальный бак цилиндрической формы, иногда дополнительно термоизолированный. Он является посредником между котлом и отопительными приборами. Стандартные модели оснащены врезкой из 2-х пар патрубков: первая пара – подача и обратка котла (малый контур); вторая пара – подача и обратка отопительного контура, разведенного по дому. Малый контур и контур отопления не пересекаются между собой.

Принцип работы теплоаккумулятора в связке с твердотопливным котлом прост:

  1. После растопки котла циркуляционный насос постоянно прокачивает теплоноситель в малом контуре (между теплообменником котла и баком). Подача котла подключается в верхний патрубок теплоаккумулятора, а обратка в нижний. Благодаря этому происходит плавное заполнение подогретой водой всей буферной емкости, без выраженного вертикального движения теплой воды.
  2. С другой стороны, сверху к буферной емкости подключена подача к радиаторам отопления, а снизу обратка. Теплоноситель может циркулировать как без насоса (если система отопления рассчитана на естественную циркуляцию), так и принудительно. Опять таки, подобная схема подключения минимизирует вертикальное перемешивание, поэтому буферная емкость отдает накопленное тепло батареям постепенно и более равномерно.

Если правильно подобрать объем и прочие характеристики буферной емкости для твердотопливного котла, потери тепла можно свести к минимуму, что отразится не только на экономии топлива, но и на комфорте топки. Накопленное тепло в хорошо термоизолированном теплоаккумуляторе сохраняется на протяжении 30-40 часов и более.

При чем за счет достаточного, значительно большего, чем в системе отопления, объеме, аккумулируется абсолютно все выделенное тепло (в соответствии с КПД котла). Уже спустя 1-3 часа топки, даже при полном затухании, в распоряжении имеется полностью «заряженный» теплоаккумулятор.

Типы конструкций

Фото Устройство буферной емкости Описание отличительных особенностей
Стандартная, описанная ранее, буферная емкость с прямым подключением сверху и снизу. Такие конструкции наиболее дешевые и наиболее часто применяемые. Подходят для стандартных систем отопления, где во всех контурах одинаковое максимально допустимое рабочее давление, одинаковый теплоноситель, а температура подогреваемой котлом воды не превышает максимально допустимую для радиаторов.
Буферная емкость с дополнительным внутренним теплообменником (обычно в виде змеевика). Устройство с дополнительным теплообменником необходимо при более высоком давлении малого контура, которое недопустимо для радиаторов отопления. Если дополнительный теплообменник подключается отдельной парой патрубков, можно подключить дополнительный (второй) источник тепла, например, ТТ котел + электрокотел. Также можно разделить теплоноситель (например: в дополнительном контуре вода; в системе отопления антифриз)
Накопительный бак с дополнительным контуром и еще одним контуром для ГВС. Теплообменник для горячего водоснабжения изготовлен из сплавов, не нарушающих санитарные нормы и требования к воде, применяемой для приготовления пищи. Применяется как замена двухконтурному котлу. Кроме того, имеет преимущество в виде практически мгновенной подачи горячей воды, в то время как двухконтурному котлу требуется 15-20 секунд на ее подготовку и доставку до точки потребления.
Аналогичная предыдущей конструкция, однако теплообменник ГВС выполнен не в виде змеевика, а в виде отдельного внутреннего бака. Помимо вышеописанных преимуществ, внутренний бак устраняет ограничения в производительности горячей воды. Весь объем бака ГВС может быть использован за неогрниченное одновременное потребление, после чего необходимо время на подогрев. Обычно, объема внутреннего бака хватает как минимум на купание 2-4 человек подряд.

Любой из вышеописанных типов буферной емкости может иметь большее количество пар патрубков, что позволяет разграничить параметры системы отопления по зонам, дополнительно подключить водяной теплый пол и т.д.

Буферное зарядное устройство свинцовых аккумуляторов

При эксплуатации свинцовых аккумуляторов в нормальном режиме существует два основных способа их зарядки:

  • быстрый — метод поддержания постоянного зарядного тока до полной зарядки;
  • буферный — I-U зарядка стабильным током до определённого напряжения и дальнейшее его ограничение.

Оба способа имеют как достоинства, так и недостатки и находят своё применение. Здесь и далее по тексту, если не указано другое, то имеется в виду двенадцати-вольтовая аккумуляторная батарея (с номинальным напряжением 12,6 Вольт). При первом способе зарядка выполняется сравнительно быстро и аккумулятор заряжается до полной своей ёмкости при конечном напряжении 14,5-15 Вольт, но в конце зарядки из-за высокого напряжения на электродах происходит обильное газообразование и этим самым снижается срок службы батареи:

Во втором случае зарядка происходит гораздо дольше с ограничением конечного напряжения 13,6-13,8 Вольт и с большИм падением зарядного тока после достижения 80-90% заряда. Выделение газов при этом незначительно, или вовсе отсутствует, как в современных герметичных гелиевых аккумуляторах. В этом режиме такие аккумуляторы могут без проблем проработать весь свой срок эксплуатации:

Быструю зарядку чаще применяют для аккумуляторов, работающих в циклическом режиме, например в детских электромобилях. А в буферном режиме батареям приходится находится в источниках бесперебойного и аварийного питания. Если долгая продолжительность зарядки не критична, то для циклической эксплуатации батарей так же можно использовать буферный режим, но время зарядки в таком случае будет довольно большим.

В наличии как раз имелось зарядное устройство для быстрой зарядки аккумуляторных батарей детских электромобилей. Судя по наклейке на корпусе оно должно заряжать аккумулятор до 14,5 Вольт током 4 Ампер, питаясь от сети переменного тока напряжением 100-240 Вольт частоты 50/60 Герц, и потребляя при этом мощность до 58 Ватт:

Это довольно высокие значения с учётом того, что предназначено оно для зарядки аккумуляторов с ёмкостью до 8 А·ч, и максимально допустимый зарядный ток для таких батарей составляет 2-2,5 Ампер.

Зарядное устройство моноблочного типа «вилка на корпусе» и имеет сетевой разъём европейского стандарта:

Возле места расположения индикаторных светодиодов передняя часть корпуса имеет вентиляционные щели, которые были деформированы при эксплуатации в результате сильного внутреннего нагрева:

После замеров было установлено, что зарядное устройство на холостом ходу без подключённой нагрузки выдаёт постоянное напряжение почти 15 Вольт:

При этом не имеется в наличии системы отключения нагрузки по окончанию процесса, что обязательно для режима быстрой зарядки. А это нехорошо скажется на долговечности аккумулятора и с каждым циклом будет сильно уменьшать оставшийся ресурс и срок службы. Данное зарядное устройство планировалось использовать для зарядки герметичного AGM-аккумулятора для которого рекомендованное напряжение буферного режима составляет 13,6-13,8 Вольт:

Было принято решение попробовать переделать зарядное устройство, так как зарядка батарей таким режимом нежелательна. Правда устройство имеет два индикаторных светодиода — красный для индикации напряжения на выходных клеммах, и зелёный для предупреждения о снижении зарядного тока ниже определённой величины и следовательно достижения на аккумуляторной батарее максимального потенциала. Но так как зарядка в таком случае не прекращается, то если вручную не отключить устройство от сети, батарея всё последующее время будет находится под высоким потенциалом, что в свою очередь вызовет газообразование в электролите и этим самым будет происходить преждевременное быстрое старение аккумулятора.

Блок зарядного устройства был разобран для изучения элементов стабилизации и/или ограничения максимального выходного напряжения и оценки возможности коррекции электрических параметров. После разборки и быстрого внешнего осмотра стало понятно, что заявленные на этикетке параметры явно завышены и блок не в состоянии долговременно обеспечивать указанный в 4 А зарядный ток и рассеивать мощность 58 Вт. Охлаждающие радиаторы на микросхеме преобразователя и на выпрямительном диоде слишком малы, даже с учётом вентиляционных щелей на верхней крышке корпуса. Также вторичная обмотка трансформатора, хоть и секционная и состоит из нескольких параллельно соединённых обмоток, всё равно суммарная площадь сечения получается маленькой для обеспечения такого большого тока:

Сразу после разборки был заменён мощный низкоомный резистор, так как старый весь обуглился и рассыпался. Вместо него был подобран и установлен самодельный проволочный резистор такого номинала, чтобы зарядный ток в начале зарядки не превышал 1,5 Ампер. Так же были удлинены выводы индикаторных светодиодов, так как они не доставали до отверстий в корпусе:

Далее нужно было освободить плату от корпуса и произвести зарисовку фрагмента стабилизирующего звена устройства. Делается это простым выниманием платы из нижней части и вытаскиванием вилки, которую удерживает небольшая пластмассовая защёлка. Не нужно ничего отпаивать, и на самом деле это оказалось очень удобным. Следует просто освободить защёлку, а вместе с ней и вилку, проводами припаянную к плате:

После освобождения платы и возможности её свободного вращения в руке, для осмотра и проведения анализа, можно зарисовать нужный участок схемы с указанием номиналов установленных радиоэлементов. Сверху платы сразу бросается в глаза интегральный стабилизатор TL431, от обвязки которого и зависит уровень выходного напряжения, а точнее его максимальное значение, так как под нагрузкой во время процесса зарядки выходное напряжение будет проседать из-за сопротивления последовательно установленного низкоомного шунта:

Получилось зарисовать и далее начертить фрагмент вторичной цепи преобразователя зарядного устройства после трансформатора. Схема является стандартной для большинства импульсных источников питания и подстройка уровня выходного напряжения не составит труда для радиолюбителя. Позиционные номера радиокомпонентов совпадают с маркировкой на плате:

Зелёным цветом выделены резисторы, от которых зависит напряжение стабилизации и максимальный ток зарядки. Резисторы R7 и R8 составляют делитель выходного напряжения для интегрального стабилизатора TL431, и от них зависит его уровень. Подбором резистора R8 можно менять это значение в некоторых пределах. А изначально обугленный резистор токового шунта, имеющий сопротивление 1 Ом и в последствии заменённый на резистор более высокого сопротивления, по всей видимости предназначен для ограничения выходного тока, а так же служит датчиком для системы определения и индикации процесса зарядки, которая в данном случае нас не интересует.

На сайте «Паяльник» имеется калькулятор для расчёта сопротивления резисторов делителя стабилизатора TL431 «TL431 калькулятор». Введя исходные данные можно легко и просто определить нужные сопротивления под определённые характеристики. Нам в данном случае легче подобрать одно из плеч делителя, а именно резистор R8, составляющий верхнее плечо и в оригинале имеющий сопротивление 23,2 кОм. Пересчитав данные калькулятором под выходное напряжение 13,8 Вольт получается значение сопротивления указанного резистора 21,3 кОм:

Но вместо того, что бы менять установленный на плате резистор, Мы поступим по другому, и к уже имеющемуся резистору параллельно установим резистор такого сопротивления, что-бы общее сопротивление двух параллельно установленных резисторов было равно необходимому, ранее рассчитанному, сопротивлению верхнего плеча. Для расчёта общего сопротивления параллельно соединённых резисторов на сайте так же имеется удобный калькулятор «Параллельное соединение резисторов». Подставив одно, имеющееся значение, и подбирая другое можно определить каким должно быть сопротивление второго, параллельно устанавливаемого резистора, для получения необходимой величины. В нашем случае это значение составило 270 кОм:

На подкорректированной схеме красным цветом отмечены внесённые изменения. Как уже ранее упоминалось, резистор шунта Мы установили с сопротивлением в два Ом, а добавленный новый резистор на 270 кОм обозначен на схеме как R new:

На самой плате устройства параллельно резистору R8 был припаян резистор с гибкими выводами на сопротивление 270 кОм, а места пайки и вся плата были тщательно зачищены спиртом:

После доработки и подключения к сети выходное напряжение без нагрузки составило 13,7 Вольт, что является в пределах нормы максимального напряжения буферного режима зарядки свинцовых аккумуляторных батарей с рабочим напряжением в 12 Вольт:

Рекомендованный зарядный ток такого режима в процессе зарядки не должен превышать 20-30% от значения ёмкости аккумулятора, и в данном случае составил примерно 1 Ампер:

В конце зарядки зажигается зелёный светодиод и зарядный ток падает до 0,1 Ампер. В таком состоянии аккумулятор можно оставить без присмотра, не опасаясь что произойдёт перезаряд и закипание электролита:

Доработка оказалась несложной и в любой момент можно вернуть прежние параметры просто отпаяв добавленный резистор. В процессе эксплуатации и продолжительной работы зарядного устройства было замечено значительное снижение температуры корпуса по сравнению с предыдущим вариантом, а весь процесс зарядки занимал примерно 8 часов. На информационной наклейке красным маркером были замазаны выходные параметры, которые уже не актуальны, а при надобности маркер легко можно стереть спиртом:

В следующих статьях будет рассмотрен многофункциональный измерительный прибор для мониторинга параметров заряда/разряда аккумуляторов и переделка обычного двенадцативольтного импульсного блока питания под зарядное устройство для литий-ионных аккумуляторных батарей с добавлением в схему узла стабилизации зарядного тока и индикатора зарядки.

Многофункциональный измеритель параметров заряда/разряда аккумуляторов

Отзывы о бытовых теплоаккумуляторах для котлов: преимущества и недостатки

Преимущества Недостатки
Гораздо более эффективное использование твердого топлива, что увеличивает экономию Система оправдана лишь при постоянном использовании. При непостоянном проживании в доме и растопке, например, лишь на выходные, системе требуется время для нагрева. В случае кратковременной работы эффективность будет сомнительной.
Продление цикла и снижение частоты закладок твердого топлива Система требует принудительной циркуляции, которая обеспечивается циркуляционным насосом. Соответственно, такая система энергозависима.
Повышение комфорта за счет более стабильной и настраиваемой работы системы отопления Для обустройства системы отопления с использованием бойлера косвенного нагрева требуются дополнительные средства. Стоимость недорогих буферных емкостей начинается от 25 тыс. рублей + расходы на обеспечение безопасности (генератор на случай отключения электроснабжения и стабилизатор напряжения, иначе при отсутствии циркуляции теплоносителя в лучшем случае может случиться перегрев и прогорание котла).
Возможность обеспечения горячего водоснабжения Буферная емкость, особенно на 750 и более литров имеет немалые размеры и требует дополнительные 2-4 м2 пространства в котельной.
Возможность подключения нескольких источников тепла, возможность разграничения теплоносителя Для обеспечения максимальной эффективности, котел должен иметь по крайней мере на 40-60% большую мощность, чем минимально необходимая для отопления дома.
Подключение буферной емкости – процесс несложный, его можно произвести без привлечения специалистов

Функционирование теплоаккумулятора в отоплении

Установленный между котлом и теплоаккумулятором циркуляционный насос обеспечивает подачу разогретого теплоносителя в верхнюю часть устройства. Через нижние патрубки остывшая вода со временем будет возвращаться к отопительному оборудованию. Если же дополнить систему вторым циркуляционным насосом и установить его в промежутке между аккумулятором и радиаторами, то система обеспечит равномерную теплоотдачу по всему зданию.

Когда теплоноситель остывает ниже заданного уровня, срабатывают установленные в отопительной системе термодатчики. Насосы снова начинают работать, обеспечивая подачу теплоносителя в контур. Тепловая энергия будет накапливаться в буферной емкости все время, пока установленный на выходе из нее насос не работает.

Отсутствие теплоаккумулятора приведет к чрезмерному перегреву помещений. Разумеется, жильцам станет жарко, поэтому придется открывать окна, через которые тепло будет выходить на улицу – а с нынешней стоимостью энергоносителей это совсем нецелесообразно. С другой стороны, в определенный момент очередная партия топлива прогорит, и наличие теплоаккумулятора позволит системе отопления продолжить работу в штатном режиме еще какое-то время.

Как выбрать буферную емкость

Расчет минимально необходимого объема

Наиболее важным параметром, с которым стоит определиться сразу – объем емкости. Он должен быть как можно большим для максимизации эффективности, но до определенного порога, чтобы мощности котла хватало для его «заряда».

Расчет объема буферной емкости для твердотопливного котла производится по формуле:

m = Q / (k*c*Δt)

    где, m – масса теплоносителя, после расчета ее не сложно перевести в литры (1 кг воды

1 дм3);

  • Q – необходимое к-во тепла, рассчитывается как: мощность котла * период его активности — теплопотери дома * период активности котла;
  • k – КПД котла;
  • c – удельная теплоемкость теплоносителя (для воды это известная величина – 4,19 кДж/кг*°C = 1,16 кВт/м3*°С);
  • Δt – разница температур в трубах подачи и обратки котла, снимаются показатели при установившейся работе системы.
  • Например, для среднестатистического дома с кладкой в 2 кирпича площадью 100 м2 теплопотери, грубо, составляют 10 кВт/час. Соответственно, необходимое количество тепла (Q) для поддержания баланса = 10 кВт. Дом отапливается котлом мощностью 14 кВт и КПД 88%, дрова в котором прогорают за 3 часа (период активности котла). Температура в трубе подачи – 85°C, а в обратке – 50°C.

    Сначала нужно рассчитать необходимое к-во тепла.

    Q = 14*3-10*3 = 12 кВт.

    В итоге m = 12 / 0,88*1,16*(85-50) = 0,336 т = 0,336 кубометра или 336 литров. Это минимально необходимый объем буферной емкости. При такой вместимости, после прогорания закладки (3ч), теплоаккумулятор накопит и распределит далее 12 кВт тепла. Для дома из примера это более 1 дополнительного часа теплых батарей на одной закладке.

    Соответственно, показатели зависят от качества топлива, чистоты теплоносителя, точности исходных данных, поэтому на практике результат может отличаться на 10-15%.

    Калькулятор расчета минимально необходимой емкости теплоаккумулятора

    Количество теплообменников


    Медные внутренние теплообменники накопительного бака.
    После подбора объема, второе, на что стоит обратить внимание – наличие теплообменников и их количество. Выбор зависит от желаний, требований к СО и схемы подключения бака. Для самой простой системы отопления достаточно пустой модели без теплообменников.

    Однако если в контуре отопления планируется естественная циркуляция, нужен дополнительный теплообменник, поскольку малый контур котла может функционировать лишь при принудительной циркуляции. Давление в таком случае выше, чем в отопительном контуре с естественной циркуляцией. Для обеспечения ГВС или подключения теплых полов также потребуются дополнительные теплообменники.

    Максимально допустимое давление

    При выборе буферной емкости с дополнительным теплообменником, следует обратить на максимально допустимое рабочее давление, которое должно быть не ниже, чем в любом из контуров отопления. Бак моделей без теплообменников в большинстве случаев рассчитаны на внутреннее давление до 6 бар, чего более чем достаточно для среднестатистической СО.

    Материал внутренней емкости

    На данный момент существует 2 варианта изготовления внутреннего бака:

    • мягкая углеродистая сталь – покрыта непромокаемым антикоррозийным покрытием, имеет более низкую себестоимость, используется в недорогих моделях;
    • нержавеющая сталь – более дорогая, но более надежная и долговечная.

    Некоторые производители также устанавливают в емкости дополнительные средства защиты стенок. Чаще всего это, например, магниевый аноидный стержень по центру бака, обеспечивающий защиту стенок бака и теплообменников от нарастания слоя твердых солей. Однако такие элементы нуждаются в периодической очистке.

    Другие критерии выбора

    После определения с основными техническими критериями, можно обратить внимание на дополнительные параметры, повышающие эффективность и комфорт от использования:

    • возможность подключения ТЭН для дополнительного подогрева от электросети, а также дополнительных контрольно-измерительных приборов, которые монтируются резьбовым или муфтовым (но ни в коем случае не сварным) соединением;
    • наличие слоя теплоизоляции – в более дорогих моделях теплоаккумуляторов между внутренним баком и наружной оболочкой имеется слой теплоизолирующего материала, способствующий еще более долгому сохранению тепла (вплоть до 4-5 дней);
    • вес и габариты – все вышеперечисленные параметры влияют на вес и размеры буферной емкости, поэтому стоит за ранее определиться как она будет заноситься в котельную.

    Сборка теплоаккумулятора своими руками

    Начать процесс самостоятельной сборки теплового аккумулятора нужно с подготовки следующих инструментов и материалов:

    • Электрическая сварка;
    • Набор ключей, включая газовый;
    • Силиконовые или паронитовые прокладки;
    • Соединительные муфты;
    • Необходимое количество листового металла;
    • Взрывные клапаны.

    Собирать своими руками теплоаккумулятор для котлов отопления нужно по технологии, которая включает в себя следующие операции:

    1. Сначала при помощи сварки собирается герметичная емкость.
    2. В готовый бак врезается четыре патрубка, из которых два будут использоваться для подачи, и еще два – для обратного движения теплоносителя.
    3. Устанавливать патрубки нужно на противоположных краях бака. Подающие патрубки врезаются в верхнюю часть бака, а обратные – в нижнюю.
    4. На верхней части конструкции устанавливаются муфты с термодатчиками и защитным клапаном.
    5. После изготовления герметичный аккумулятор нужно закрыть слоем теплоизоляционного материала.
    6. Все патрубки подключаются к необходимым выводам, а сам бак соединяется с отопительным котлом.

    Перед тем, как сделать теплоаккумулятор для отопления своими руками, нужно рассчитать его мощность и толщину стенок, чтобы готовое устройство могло в должной мере выполнять возложенные на него функции. Если самостоятельное проектирование кажется слишком сложным, то лучше будет поискать готовые схемы или же обратиться за помощью к профессионалам.

    Лучшие известные производители и модели: характеристики и цены

    Sunsystem PS 200

    Стандартный недорогой теплоаккумулятор, отлично подходящий для твердотопливного котла в небольшом частном доме площадью до 100-120 м2. По устройству это обычный бак, без теплообменников. Объем емкости – 200 л при максимально допустимом давлении 3 бар. За небольшую стоимость модель имеет 50 мм слой полиуретановой теплоизоляции, возможность подключения ТЭН.

    Цена: в среднем 30 000 рублей.

    Hajdu AQ PT 500 C

    Одна из лучших за свою цену моделей буферных емкостей, оснащена одним встроенным теплообменником. Объем – 500 л, допустимое давление – 3 бар. Отличный вариант для дома площадью 150-300 м2 с большим запасом мощности твердотопливного котла. В линейке имеются модели разных объемов.

    Начиная с объема 500 л модели (опционально) оснащаются слоем полиуретановой термоизоляции + кожухом из искусственной кожи. Возможна установка ТЭН. Модель известна исключительно положительными отзывами владельцев, надежностью и долговечностью. Страна-производитель: Венгрия.

    Стоимость: 36 000 руб.

    S-TANK AT PRESTIGE 300

    Еще одна недорогая буферная емкость объемом 300 л. По конструкции представляет из себя накопительный бак без дополнительных теплообменников с максимально допустимым рабочим давлением 6 бар. Внутренние стенки, как и в предыдущих случаях, исполнены из углеродистой стали. Главным отличием является существенный, экологически чистый слой теплоизоляции из полиэфирного материала по технологии NOFIRE, т.е. высокого класса термо- и огнестойкости. Страна-производитель: Беларусь

    Стоимость: 39 000 руб.

    ACV (АЦВ) LCA 750 1 CO TP

    Производительная дорогостоящая буферная емкость объемом 750 л с дополнительным трубчатым теплообменником для ГВС, предназначенная для котлов с большим запасом мощности.

    Внутренние стенки покрыты защитной эмалью, имеется высококачественный 100 мм слой теплоизоляции. Внутри бака установлен магниевый анод, предотвращающий накопление слоя твердых солей (в комплекте имеется 3 запасных анода). Возможна установка ТЭН и дополнительных контрольно-измерительных приборов. Страна-производитель: Бельгия.

    Стоимость: 168 000 руб.

    Популярные модели баков

    В настоящее время существует довольно широкий выбор буферных емкостей. Большое количество таких конструкций производят как отечественные, так и зарубежные предприятия. Самыми популярными являются:

    1. Прометей — ряд резервуаров различного объема, производимых в Новосибирске. Модельный ряд начинается от баков объемом 250 л и заканчивается емкостями 1000 л. Максимальный диаметр такой конструкции равен 900 мм, а высота — 2100 мм. Гарантийный срок службы составляет 10 лет.
    2. Hajdu PT 300 — буферная емкость от венгерских производителей. Она обладает дополнительным теплообменником косвенного нагрева, осуществляемого керамическим ТЭНом. А также в бак встроены магниевый антикоррозийный анод и термостат. Защитный кожух выполнен из стали с полиуретановой изоляцией.
    3. NIBE BU-500.8 — шведский теплоаккумулятор с объемом бака 500 л. При диаметре 0,75 м высота составляет 1,75 м. Максимальное рабочее давление — 6 атмосфер.


    Существует 3 популярные модели баков
    При этом совсем необязательно покупать теплоаккумулятор в магазине. Вполне можно изготовить буферную емкость своими руками, если есть сварочный аппарат, соответствующие материалы и некоторые навыки сварщика.

    Котельная, буферная емкость, электро котёл, тёплый пол, отопления:

    Буферная ёмкость и твердотопливный котёл. Как Подключить:

    Цены: итоговая таблица

    Модель Объем, л Допустимое рабочее давление, бар Стоимость, руб
    Sunsystem PS 200,
    Болгария
    200 3 30 000
    Hajdu AQ PT 500 C,
    Венгрия
    500 3 36 000
    S-TANK AT PRESTIGE 300,
    Беларусь
    300 6 39 000
    ACV (АЦВ) LCA 750 1 CO TP,
    Бельгия
    750 8 168 000

    Схемы обвязки и подключения

    Упрощенная наглядная схема (нажмите для увеличения) Описание
    Стандартная схема подключения «пустых» буферных емкостей к твердотопливному котлу. Используется, когда в системе отопления (в обоих контурах: до бака и после) единый теплоноситель, единое допустимое рабочее давление.
    Схема аналогичная предыдущей, но предполагающая установку термостатического трехходового клапана. При таком обустройстве доступна регулировка температуры отопительных приборов, что позволяет еще более экономно расходовать накопленное в баке тепло.
    Схема подключения теплоаккумуляторов с дополнительным теплообменников. Как уже не раз упоминалось, используется в случае, когда в малом контуре предполагается использование иного теплоносителя или более высоких показателей рабочего давления.
    Схема организации горячего водоснабжения (при наличии в баке соответствующего теплообменника).
    Схема, предполагающая использование 2-х независимых друг от друга источников тепловой энергии. В примере это электрический котел. Источники подключаются в порядке убывания теплового напора (сверху-вниз). В примере сначала идет основной источник – твердотопливный котел, ниже – вспомогательный электрокотел.

    В качестве дополнительного источника тепла, например, вместо электрокотла, может использоваться трубчатый электронагреватель (ТЭН). В большинстве современных моделей уже предусмотрена его установка посредством фланцевого или муфтового крепления. Установив в соответстсвующий патрубок ТЭН можно частично заменить электрический котел или лишний раз обойтись без растопки твердотопливного котла.

    Важно понимать, что это упрощенные, не полные схемы подключения. Для обеспечения контроля, учета и безопасности системы, на подаче котла устанавливается группа безопасности. Кроме того, важно позаботиться о работе СО в случае отключения электроснабжения, т.к. для питания циркуляционного насоса недостаточно энергии вырабатываемой термопарой энергонезависимых котлов. Отсутствие циркуляции теплоносителя и скоплении тепла в теплообменнике котла с высокой вероятностью приведет к разрыву контура и аварийному опорожнению системы, не исключено прогорание котла.

    Поэтому в целях безопасности, необходимо позаботиться об обеспечении работы системы по крайней мере до полного прогорания закладки. Для этого используется генератор, мощность которого подбирается в зависимости от характеристик котла и длительности горения 1 закладки топлива.

    Как подобрать теплоаккумулятор для твердотопливного котла

    Стоимость аккумуляторов зависит от материала, из которого изготовлен бак, его объёма, наличия дополнительного оборудования, а так же фирмы-изготовителя.

    В качестве материала для стенок аккумулятора могут быть использованы нержавейка или чёрная сталь. Естественно, в первом случае срок его эксплуатации будет гораздо выше.

    Перед тем, как приобретать аккумулятор, нужно выполнить расчет буферной ёмкости твердотопливного котла и всей системы отопления, в том числе и диаметров патрубков.

    Такие расчёты должен делать специалист, в крайнем случае, это можно выполнить самостоятельно.

    Как подобрать теплоаккумулятор для твердотопливного котла, и что нужно учитывать в данном случае? В первую очередь, такой фактор, что мощность котла и самой установки должна быть ориентирована на работу в условиях наиболее низкого температурного режима в данном регионе. Это нужно для того, чтобы система работала не в напряжённом ри на полную мощность, а с определённым запасом энергоэффективности. В таком случае она прослужит длительный срок, её работа будет стабильной.

    Источник

    Оцените статью