- Сравнение ветрогенераторов
- Принцип работы вертикального ветрогенератора типа Савониус
- Ветер действующий на ротор ветрогенератора
- Принцип работы горизонтального ветряка («пропеллера»)
- Ветер действующий лопасть
- Подгонка ветроколеса к генератору
- Вертикальные или горизонтальные ветрогенераторы?
- КПД ветрогенераторов
- Срок службы
- Цена ветрогенераторов
- Вывод
- Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности
- Принцип работы
- Какая конструкция лучше
- Плюсы вертикальной оси
- Минусы
- Видео. Геликоидный ветрогенератор
- Какие виды ветрогенераторов наиболее эффективны: особенности, достоинства и недостатки
- Основные виды ветрогенераторов
- Горизонтальные конструкции, их особенности, достоинства и недостатки
- Вертикальные генераторы, особенности, плюсы и минусы
- Ротор Дарье
- Ветровая турбина Савониуса
- Выбор вертикального ветрогенератора
- Генераторы российского производства
- Необычные конструкции ветрогенераторов
- Устройство на водяных каплях
- Дизайнерский ветрогенератор revolution air
- Парусный ветряк
- Конструкция Третьякова
- Летающий ветрогенератор-крыло
- Мощные генераторы электроэнергии
Сравнение ветрогенераторов
Принцип работы вертикального ветрогенератора типа Савониус
Чем сильнее ветер тем больше разность давления и следовательно мощность ротора растет и обороты тоже. Но обороты не могут превысить скорость ветра, так-как толкать тогда ветер не сможет лопасть. Самые большие обороты могут только приблизится к скорости ветра, но не могут достигнуть ее так-как возвращающиеся лопасти тоже испытывают давление. И при максимальных оборотах ротор имеет КПД 0% , так-как вся энергия уходит на раскрутку ротора. Но при нагрузке обороты ротора падают и пропорционально падению оборотов растет и мощность на валу. Максимальная мощность достигается при скорости вращения в два раза меньшей скорости ветра. Например если скорость ветра 10м/с то максимальная мощность будет на валу при скорости движения конца лопасти 5м/с. Если-же обороты увеличиваются, то мощность падает, а если обороты под нагрузкой падают, то ветер просто не успевает проваливаться и набегает как ком на лопасть, этот ком ветра быстро увеличивается, и новые порции ветра натыкаясь на ком расходятся в стороны, так отражается большая часть энергии ветра и в итоге на роторе существенно падает крутящий момент.
Ветер действующий на ротор ветрогенератора
Принцип работы горизонтального ветряка («пропеллера»)
Таким образом скорость вращения кончика лопасти может превышать в разы скорость ветра. И так-же здесь кроется ответ «Почему маленькие лопасти работают лучше чем огромные». А все потому что в создании давления участвует весь поток ветра попадающий в плоскость вращения винта. И через узкие лопасти может проваливаться больше воздуха не задерживаясь а лишь отработав доли секунды. Так-же аэродинамически тонкие лопасти дают меньшее лобовое сопротивление потоку в плоскости вращения.
Здесь получается наоборот, мощность винта растет с ростом оборотов, чем быстрее лопасть вращается тем больше ветра она отражает за единицу времени. Давление растет еще больше и сильнее выталкивает лопасть. Теоретически этот рост оборотов давления и мощности бесконечен если бы не другие факторы, которые все ограничивают. Так например когда ветровой поток не успевает проваливаться то спереди винта нарастает воздушная подушка, с которой сваливается основной поток ветра в стороны, следовательно мощность ветра просто сваливается с подушки в стороны и винту перепадает очень мало энергии.
Например у много-лопастных винтов предел давления наступает очень быстро, поэтому они менее оборотистые. Так-же кроме превышения давления лопасть вращаясь попадает в зону повышенного давления созданного впереди идущей лопастью и это давление тормозит лопасть, поэтому чем больше лопастей тем сильнее происходит торможение.
Самые эффективные одно-лопастные винты, так-как лопасти при вращении не мешает повышенное давление от впереди идущих лопастей, а только сопротивление потока, но конечно до того момента пока лопасть не упирается в давление созданное ей самой. Поэтому обороты у этих винтов самые большие, но тоже имеют свой придел. Так-же этот придел наступает когда давление достигает большой величины и поток воздуха не успевает проваливаться через винт и нарастает воздушной шапкой на винте, в следствие чего новые порции воздуха натыкаясь на эту подушку расходятся в стороны.
Ветер действующий лопасть
Подгонка ветроколеса к генератору
Если-же поставить слабый генератор, то ротор будет набирать большие обороты и в следствии чего мощность будет падать, так-как чем быстрее лопасть вращается тем меньше на нее давит напор ветра, она же уходит от него. В итоге небольшой прирост оборотов, но дальше мощность падает и даже под небольшой нагрузкой обороты все равно не растут.
Так-же, но наоборот с горизонтальным винтом. Если генератор слишком мощный, то винт не сможет выйти на максимальные обороты и следовательно не сможет от ветра получить всю возможную мощность. Обороты даже при усилении ветра не будут дальше расти, а набегающий поток будет просто срываться с медленно вращающейся лопасти. А если генератор слабый, то обороты винта будут всегда на пределе, а значит точка максимального давления будет превышена и лобовое сопротивление вращающихся лопастей не позволят оборотам расти и мощность винта упадет, в итоге из-за предела по оборотам мощности не будет расти.
Поэтому в обоих случаях нужно чтобы мощность генератора четко соответствовала мощности и о оборотам винта при разной скорости ветра. Например если пропеллер диаметром 1,2м при 5м/с имеет 500 об/м, и мощность на валу около 40 ватт, то генератор нужен чтобы на 500 об/м нагружал винт не более 35ватт, и не менее 30 чтобы впустую не тратить энергию винта. Так-же при больших оборотах, к примеру тот-же винт при 10м/с выдаст около 400 ватт энергии на валу при оборотах где-то 1200об/м, значит и генератор должен на этих оборотах нагружать не более 350 ватт. Если учесть что КПД генератора где-то 0,8 то реально электрическую мощность можно ожидать около 300 ватт на 10 м/с.
Источник
Вертикальные или горизонтальные ветрогенераторы?
Было как-то много в последнее время ежедневной рутины и всё не получалось написать этот пост, хотя идея о нём была у меня уже давно. Что-то закрутился я совсем, а идея словно витала в воздухе: моя заметка о разнице между ветрогенераторами с вертикальной осью вращения и ветрогенераторами с горизонтальной осью вращения.
Как-то я заметил на некоторых сайтах в Интернете статьи о том, какие чудесные-расчудесные ветрогенераторы с вертикальной осью вращения, какие у них великолепные характеристики и то, на сколько они лучше, чем классические «горизонталки». Итак…
КПД ветрогенераторов
Общий коэффициент полезного действия вертикальных (20-30%) и горизонтальных (25-35%) ветрогенераторовприблизительно одинаков. Не смотря на то, что у ветряков с горизонтальной осью вращения КПД выше и скорость страгивания ниже, они практически компенсируются коэффициентом использования энергии ветра (КИЭВ), который немногим выше у вертикальных ветряков.
Как достигается больший КИЭВ у вертикалок? Вертикальные ветряки всегда находятся «по ветру» и им не нужно поворачиваться при изменении направления ветра. А вот горизонталки должны развернуться. В момент разворота горизонталок производительность падает, так как сила потока ветра затухает.
Некоторые компании используют для производства вертикальных ветряков постоянные (неодиимовые) магниты вместо подшипников. Это позволяет увеличить производительность системы до 15%. То есть общая производительность таких ветровых генераторов вырастает всего на 3-5% от общего суммарного КПД. Но в отличие от ветровых генераторов с подшипниками цена вертикальных ветрогенераторов с постоянными магнитами (т.н. левитационные ветрогенераторы) возрастает. Ранее при производстве ветрогенераторов активно применялась оцинковка, но впоследствии развития технологии производители отказались от этого технологического процесса в пользу более современных и эффективных материалов.
Срок службы
Срок службы у обоих типов ветряков практически одинаков. При правильном уходе и обслуживании он составляет 15-25 лет бесперебойной работы. Различаются только основные узлы, требующие большего внимания и периодической замены, на которые приходятся самые большие нагрузки.
В горизонтально-осевых ветрогенераторах основные нагрузки идут на опорно-подшипниковый узел и ступицу. А в вертикально-осевых ветрогенераторах ими также являются опорные подшипники, но в гораздо большей степени, чем у горизонталок, и лопасти.
Цена ветрогенераторов
Что касается цены, то стоимость вертикальных ветряков на сегодняшний день гораздо превышает стоимость горизонтальных. Зачастую это превышение может быть 1:2 или даже 1:3. Почему производители вертикалок устанавливают такую неоправданно высокую цену на свою продукцию достоверно не известно.
Возможно, это связанно с высокой стоимостью опорно-подшипникового узла, возможно из-за конструкции лопастей. Для меня это загадка, но факт остаётся фактом.
Вывод
Какого-то большого различия в особенности работы или производительности обоих видов ветрогенераторов вы не найдёте. И вертикальные, и горизонтальные ветрогенераторы работают практически одинаково.
Могу порекомендовать использовать вертикальные ветрогенераторы в местах с высокой турбулентностью и постоянно меняющейся скоростью ветра (в таких местах я вообще не рекомендую ставить ветряки, но если вам очень нужно, то ставьте), хотя их высокая цена сводит к минимуму рациональность их применения в подобных местах. А горизонтальные ветряки используйте во всех остальных случаях.
Источник
Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности
Использование энергии ветра для выработки электричества – одна из перспективных форм развития альтернативной энергетики. Вертикальный ветрогенератор является перспективным направлением развития отрасли, т.к. имеет ряд преимуществ по сравнению с горизонтальными аналогами.
Принцип работы
Вертикальный ветряк представляет собой цилиндр, устанавливаемый на основание. Благодаря своей форме, работает вне зависимости от направления ветра. Вне зависимости от вида вертикального ветрогенератора, он устроен таким образом, чтобы давление потока воздуха на одну из его сторон было выше, чем на другую.
Благодаря такой разнице в давлении происходит вращение оси генератора и выработка электричества. Из-за того, что сила ветра направлена на обе стороны ветрогенератора, показатель стартовой скорости ветра немного больше, чем у горизонтальных ветряков, но при должном качестве деталей, существует самораскрутка – т.е. значительное увеличение оборотов генератора даже при небольшом (от 3,5 м/с) ветре.
Какая конструкция лучше
Существует несколько принципиально разных конструкций вертикальных ветрогенераторов, каждая из них обладает своими достоинствами и недостатками.
Ветряк Савониуса — полукруглые лопасти
На ортогональный ротор устанавливают дополнительные статические экраны для увеличения производительности
Геликоидный ротор имеет сложную конструкцию
Плюсы вертикальной оси
Положительные качества всех вертикальных ветрогенераторов:
- Не направляются по ветру, работают при любой его направленности.
- В отличие от ветрогенераторов с горизонтальной осью, имеет только одну ось вращения, следовательно бо́льший срок службы.
- Возможна установка на небольшой высоте — от 1,5м, в зависимости от модели.
- Все важные подвижные элементы находятся в нижней части генератора, что позволяет удобно его обслуживать.
Важно. При необходимости вал ротора увеличивается до необходимой длины для удобства доступа к статору, без существенной потери КПД.
Минусы
- Громоздкость конструкции. Самые легкие вертикальные ветряки весят не менее 300 кг вместе со стойкой.
- Низкая эффективность по сравнению с горизонтальным.
- Шумность. Ветряк издает шум от лопастей во время работы.
Видео. Геликоидный ветрогенератор
В ролике наглядно показана работа геликоидного ветряка, установленного на специальной мачте
Источник
Какие виды ветрогенераторов наиболее эффективны: особенности, достоинства и недостатки
Обновлено: 16 января 2021
Возрастающий интерес конструкторов к ветроэнергетике, стремление обеспечить автономность, независимость жилья от поставщиков ресурсов, вызвали появление множества разработок, функционально опережающих традиционные образцы. Обилие конструкций и разновидностей ветряков заставляет рассмотреть их внимательнее.
Основные виды ветрогенераторов
В первую очередь, ветрогенераторы принято разделять на вертикальные и горизонтальные. Эти группы называются так из-за расположения оси вращения крыльчатки. Горизонтальные конструкции напоминают пропеллер или вентилятор, а вертикальные по своему строению близки к карусели. Такое разделение условно, в настоящее время имеются конструкции, сочетающие в себе элементы и той, и другой группы. Есть также отдельные устройства, которые не могут быть причислены к этим категориям.
Горизонтальные конструкции, их особенности, достоинства и недостатки
Горизонтальные устройства имеют более высокую эффективность, поскольку энергия потока усваивается ими намного полнее. Все горизонтальные ветряки созданы практически по одной конструктивной схеме, есть некоторые отличия лишь в строении ротора. К недостаткам этой группы можно отнести необходимость настройки на ветер, которая хоть и производится автоматически, но требует наличия дополнительного шарнирного соединения, обеспечивающего вращение устройства вокруг вертикальной оси.
Кроме того, для горизонтальных устройств важно наличие высокой опоры — мачты, обеспечивающей оптимальный режим контакта с потоками ветра. Специфика работы требует наличия защиты от ураганного ветра, которая при увеличении силы потока отводит ротор от ветра, вследствие чего частота вращения резко падает.
Вертикальные генераторы, особенности, плюсы и минусы
Вертикальные ветрогенераторы менее эффективны вследствие наличия останавливающего воздействия потока ветра на обратные стороны лопастей. Этот недостаток практически единственный. Вертикальные конструкции не нуждаются в наведении на ветер, не требуют установки на высокие мачты, доступны для ремонта, обслуживания или самостоятельного изготовления.
Именно вертикальные конструкции обеспечивают такое разнообразие форм и моделей ротора, созданных профессиональными конструкторами и талантливыми любителями. Рассмотрим некоторые варианты конструкции вертикальных роторов:
Ротор Дарье
Отличается конфигурацией лопастей, которые расположены вертикально и по касательной к окружности вращения. Кроме того, форма лопасти имеет строение как у крыла самолета, поэтому при вращении создается подъемная сила, облегчающая движение и способствующая работе со слабыми потоками ветра.
Ветровая турбина Савониуса
Этот вид имеет две лопасти, установленные напротив друг друга. Форма лопастей напоминает желоб, при воздействии ветрового потока на обратную сторону происходит расщепление струи воздуха, которая частично уходит в сторону, а частично соскальзывает с обратной стороны одной лопасти на рабочую часть второй. Ветрогенератор Савониуса является одной из самых старых разработок, но до сих пор вполне успешно используется как в промышленных, так и в самодельных устройствах.
Выбор вертикального ветрогенератора
Для того, чтобы правильно подобрать конструкцию вертикального ветрогенератора, надо учесть размеры ротора, силу ветра в регионе, потребность в определенном количестве электроэнергии, и сопоставить эти величины. Чем больше ротор, тем он тяжелее и тем труднее ему начинать вращение. Способность начинать вращаться при слабых ветрах присуща не каждому виду вертикальных устройств, поэтому следует для больших ветряков использовать наиболее чувствительные конструкции.
Вариантов выбора много, их параметры мало отличаются друг от друга, но некоторая разница присутствует. Если рассматриваемая конструкция не способна обеспечить желаемое количество энергии, следует отказаться от нее и рассмотреть другой вариант.
Кроме указанных параметров надо помнить, что самодельное устройство во многих случаях выгоднее и надежнее, так как легче ремонтируется и не требует больших расходов, что при выборе может сыграть решающую роль.
Генераторы российского производства
Российские фирмы-производители ветряков пока не могут в полную силу конкурировать с зарубежными изготовителями. При этом, отечественные конструкторы учитывают специфику и потребности российского пользователя. Конструкции российских фирм рассчитаны на потребление в масштабах одного дома, или одной небольшой системы (освещение, водяной насос и т.д.). Такой подход позволяет создавать устройства, доступные по цене и удобные по параметрам.
Приобретение крупных образцов отечественному пользователю не по карману, а удовлетворить потребности одной усадьбы можно одним-двумя небольшими комплексами. Поэтому российские фирмы выпускают более привлекательные модели, что создает для них неплохие перспективы и повышает конкурентоспособность.
Необычные конструкции ветрогенераторов
Среди широкого ряда конструкций ветряков встречаются устройства весьма специфического вида. При этом, они полностью функциональны и выполняют свою работу на достаточно высоком уровне (для опытных или пилотных образцов). Некоторые конструкции совершенно выбиваются из общего ряда и обладают уникальными свойствами, другие намного ближе к традиционным формам. Рассмотрим их поближе:
Устройство на водяных каплях
Из необычных ветрогенераторов этот — самый необычный. Он не похож ни на одну известную конструкцию. Он даже не имеет вращающихся частей. Представляет собой раму, внутри которой расположены горизонтально трубки с водой. На поверхности трубок имеются сопла, из которых выпускаются капли воды, заряженной положительно при помощи электродов, находящихся внутри трубок. При порыве ветра капли попадают на противоположные электроды, изменяя их заряд, что вызывает возникновение электрического тока в системе.
Дизайнерский ветрогенератор revolution air
Этот ветрогенератор создан, по сути, с декоративными целями. Его свойства таковы, что пользоваться им как полноценным устройством вряд ли получится. Для запуска ему нужна скорость потока от 14 м/сек, а при минимальной цене в 2500 евро такие характеристики нельзя рассматривать как нормальные рабочие параметры. Устройство имеет оригинальный внешний вид, хотя, по сути, является переосмысленным в художественном смысле вариантом ветрогенератора ортогонального типа.
Парусный ветряк
Еще одна оригинальная конструкция ветряка, имеющего весьма широкие лопасти. Они изготовлены в виде рам, на которые натягивается плотное полотно, образующее парус. Такая конструкция способствует получению больших лопастей при малом весе.
Имеется также конструкция, где парус создает давление на систему поршней без вращения. Большая площадь позволяет эффективно использовать полученную энергию ветра, но имеется опасность выхода из строя мачты ветряка при сильном порыве. Конструкция практически не шумит, не имеет движущихся частей, что увеличивает срок службы и снижает расходы на обслуживание устройства.
Конструкция Третьякова
Ротор ветрогенератора Третьякова имеет довольно сложную конструкцию, хотя, по сути, он является разновидностью ротора с диффузором. Устройство имеет вертикальный ротор-крыльчатку. Вокруг нее располагается подвижный воздухоприемник со стабилизатором, автоматически устанавливающим конструкцию по ветру. Воздухоприемник имеет также ряд направляющих, организующих поступление потока в нужном направлении.
Воздух, попадая внутрь корпуса, обходит рабочее колесо снизу и направляется к лопаткам. Такой сложный путь потока способствует получению правильного направления струи и отсутствию противодействующего контакта с обратными сторонами лопастей. Ротор способен начинать вращение при ветре от 1,4 м/сек, что очень ценно в условиях нашей страны, не отличающейся сильными и ровными ветрами.
Летающий ветрогенератор-крыло
Идея создания такой конструкции опирается на тот факт, что на высоте потоки ветра более активны и имеют большие скорости. Разработчики используют приспособление, напоминающее гигантский воздушный змей, который поднимается на большую высоту и летает по заранее задуманной траектории, вырабатывая электрический ток. Устройство позволяет отказаться от создания высоких мачт, поднимать ветряк на большие высоты и обеспечивать максимально возможные скорости ветра.
Внимание! Большинство необычных разработок до сих пор не запущено в массовое производство. Причиной этого стали относительно невысокие показатели, которые демонстрируют конструкции, и сложности в осуществлении некоторых операций эксплуатационного характера (например, запуск ветряка-крыла).
Мощные генераторы электроэнергии
Мощные ветрогенераторы используются для выработки электроэнергии в промышленных масштабах. Их создание было необходимостью, вызванной полным отсутствием других возможностей. Созданные большие ветряки имеют большую мощность и действуют в составе ветроэнергетических станций (ВЭС).
В них входят десятки таких ветряков, обеспечивающих суммарную выработку 400-500 мВт энергии, что уже сопоставимо с возможностями ГЭС, хотя и не может перекрыть их. Размеры таких ветряков действительно огромны, размах лопастей турбины «Энеркон» составляет 126 м, а высота от земли до оси ротора — 135 м.
Такие габариты вызвали массу домыслов о вреде для здоровья человека, об опасности для пролетающих птиц и прочих небылицах. Использование этих гигантов дает возможность снабжать энергией целые регионы Германии, Дании и прочих государств, расположенных на побережье Атлантики и Балтики.
Возникающие слухи свидетельствуют лишь о неграмотности населения и не имеют ничего общего с реальной ситуацией. Эксплуатация крупных ветрогенераторов была бы попросту невозможной, если бы они имели какое-либо отрицательное воздействие на природу или человека. Европейские законы на этот счет весьма строги и не допускают исключений.
Источник