- Ni-Cd аккумуляторы как заряжать и зарядные устройства
- Как заряжать и разряжать Ni─Cd аккумуляторы?
- Процесс разрядки
- Зарядка Ni─Cd аккумуляторов
- В итоге
- Как заряжать ni cd аккумулятор: разновидности зарядных устройств, процесс заряда и разрядки
- Особенности эксплуатации Ni-Cd-аккумуляторов
- Разновидности зарядных устройств для никель-кадмиевых аккумуляторов
- Процесс разряда и заряда Ni-Cd-аккумуляторов
- Процесс разряда никель-кадмиевых батарей
- Процесс заряда никель-кадмиевых батарей
- Режим заряда Ni-Cd-аккумулятора
Ni-Cd аккумуляторы как заряжать и зарядные устройства
Ni─Cd аккумуляторы получили широкое распространение в различных электронных девайсах и переносном инструменте. Например, это музыкальные плееры, фотоаппараты и так далее. Последние годы практически заменили литий─ионные АКБ. Там, где раньше использовались никель─кадмиевые аккумуляторы (ноутбуки, мобильные гаджеты), теперь работают батареи литиевого типа. Они не смогли заменить их только в устройствах, где требуется высокий разрядный ток (электроинструмент). Кадмиевые батарейки довольно прихотливые в плане обслуживания. Нужно уметь их правильно использовать, заряжать, а также делать периодические циклы заряд-разряд, чтобы устранять «эффект памяти». В этом случае Ni─Cd аккумуляторы прослужат долго. В этом материале речь пойдёт о том, как заряжать никель─кадмиевые АКБ и о зарядных устройствах для них.
Чем заряжать Ni─Cd аккумуляторы?
Для того чтобы заряжать никель─кадмиевые аккумуляторы, требуется специальное зарядное устройство. На рынке имеется огромное разнообразие таких устройств. Среди них стоит выделить 2 основных типа устройств:
- автоматические;
- реверсивные импульсные.
Автоматические ЗУ для никель─кадмиевых батарей представляют собой простые устройства. Стоимость их небольшая, конструкция несложная. Одновременно с их помощью возможно заряжать 2 или 4 батарейки. Для зарядки Ni─Cd аккумулятора, он просто вставляется в ЗУ, выбирается количество элементов и включается в сеть. Многие пользователи портативных плееров и фотоаппаратов знают, как заряжать Ni─Cd аккумуляторы с помощью автоматических сетевых ЗУ.
Реверсивные импульсные зарядки имеют более сложное устройство и стоят дороже автоматических. Некоторые производители таких устройств относят их к профессиональному классу. Такие ЗУ заряжают аккумуляторы циклически с различным временным интервалом. При этом многие из них делают разрядку, балансировку батареек Ni─Cd.
Как заряжать и разряжать Ni─Cd аккумуляторы?
Процесс разрядки
left;»>Этот тип аккумуляторов имеет разрядные характеристики, существенно зависящие от параметров батареи, определяющих величину внутреннего сопротивления. Например, это толщина электродов, их структура и т.п. Ниже приведен полный список параметров, влияющих на разрядные характеристики:
- объём электролита;
- толщина и структура сепараторного материала;
- плотность сборки;
- особенности конструкции.
Самая высокая велечина ёмкости Ni-Cd аккумуляторной батареи наблюдается при 20 С. Если температура растёт, то ёмкость не снижается. Значение 20 С лучше всего подходит для зарядки АКБ.
center;»>
left;»>Если температура окружающей среды снижается в отрицательную область, то величина разрядной ёмкости уменьшается пропорционально росту тока разряда. Это происходит из-за того, что при снижение температуры приводит к увеличению внутреннего сопротивления батареи и снижается разрядное напряжение.
Зарядка Ni─Cd аккумуляторов
Важной задачей при заряде Ni─Cd аккумуляторов является исключение перезаряда. Это очень важный момент. Когда вы заряжаете никель─кадмиевый аккумулятор, внутри него растёт давление. В процессе заряда происходит выделение кислорода и снижение коэффициента использования зарядного тока.
Для полного заряда Ni─Cd аккумулятора ему нужно в процессе зарядки передать до 160% номинала ёмкости. Заряжать АКБ разрешается в интервале от 0 до 40 С, а желательно это делать от 10 до 30 С. Если на минусовом электроде падает температура, то уменьшается поглощение кислорода. При этом начинает расти давление. При существенной перезарядке от избытка давления может сработать аварийный клапан. Когда температура растёт, потенциал аккумулятора увеличивается. При этом на плюсовом электроде кислород начинается выделяться очень рано.
Чтобы полноценно использовать мощность Ni─Cd аккумулятора, нужно заряжать его большими зарядными токами. Если требуется сообщить ему максимум ёмкости, то величина зарядного тока должна быть небольшой (0,1*С). Он будет заряжаться в таком режиме примерно 14─16 часов. Используя подачу тока ступенями, вы можете ускорить процесс зарядки Ni─Cd аккумулятора. По такой схеме нужно заряжать силой тока 1*С до 10% ёмкости, затем 1,5*С до 80 процентов. Оставшаяся ёмкость набирается током величиной 0,5*С.
В итоге
Когда будете заряжать Ni─Cd аккумулятор, не допускайте его сильного нагрева и излишнего заряда. Чем большее число параметров контролирует ваше ЗУ с целью отключения заряда, тем лучше. Современные зарядные устройства для никель─кадмиевых аккумуляторов обязательно контролируют несколько параметров, по которым определяется точное время отключения заряда.
Источник
Как заряжать ni cd аккумулятор: разновидности зарядных устройств, процесс заряда и разрядки
Источники тока на базе соединений никеля и кадмия, массово выпускающиеся с 50-х гг. прошлого века, используются в портативных электрических инструментах и электронном оборудовании. Низкая стоимость изделий позволяет им конкурировать с батареями на литиевой основе. Пользователю необходимо знать, как заряжать Ni-Cd-аккумулятор, поскольку от корректности этой процедуры зависит ресурс батарейки.
Особенности эксплуатации Ni-Cd-аккумуляторов
Правила эксплуатации никель-кадмиевых батареек:
- При использовании источников постоянного тока на никель-кадмиевой основе следует учитывать “эффект памяти”, приводящий к снижению емкости батареи. Явление возникает вследствие частичной разрядки элемента в процессе применения.
Батарея прекращает работу при достижении зафиксированного значения, несмотря на оставшуюся часть емкости. Для устранения этого эффекта необходимо добиваться разряда батарейки до напряжения 0,9-0,95 В, дальнейшее снижение напряжения негативно влияет на ресурс аккумуляторной батареи. - Перед началом применения никель-кадмиевого элемента выполняется цикл тренировочных разрядов и зарядов, позволяющих довести параметры изделия до заявленных производителем характеристик. Рекомендуется выполнить 4-6 рабочих циклов, для восстановления элементов низкого качества производится 30-40 циклов зарядки и разрядки.
- Если аккумулятор не использовался более 4-6 месяцев, то выполняется дополнительный цикл тренировки. Следует учитывать, что злоупотребление тренировочными циклами приводит к необратимому повреждению конструкции никель-кадмиевой батареи.
- Новые аккумуляторы допускают длительное хранение без зарядки. Если не планируется использование устройств, то выполнять зарядку не рекомендуется, т.к. при длительном хранении заряженных изделий наблюдается деградация элемента, приводящая к падению емкости и остальных параметров. Если требуется поместить на хранение ранее использовавшиеся источники тока, то они предварительно разряжаются до 0,9 В.
- Батареи, разряжавшиеся и заряжавшиеся слабыми токами, теряют свои емкостные характеристики. Подобное явление наблюдается у элементов, установленных в источниках бесперебойного питания. Для восстановления рабочих характеристик достаточно провести цикл глубокой разрядки с последующим набором емкости от зарядного приспособления.
Разновидности зарядных устройств для никель-кадмиевых аккумуляторов
Для восстановления емкости АКБ никель-кадмиевого типа используются 2 разновидности зарядных устройств:
- автоматического типа;
- импульсные реверсивные блоки.
Автоматический модуль оснащен гнездами соответствующего аккумуляторам размера. Такие устройства рассчитаны на 2 или 4 элемента, в конструкции блока предусмотрен переключатель, позволяющий выбрать количество заряжаемых изделий.
Зарядка аккумуляторов начинается после подключения блока к бытовой сети напряжением 230 В. Внутри модуля установлен понижающий трансформатор с выпрямительным каскадом, для отображения статуса зарядки применяется линейка светодиодов или многоцветный индикатор.
Во время зарядки индикатор горит красным цветом, после ее завершения включается зеленая лампочка. В конструкции автоматического блока предусмотрена функция разряда батареи, активируемая кнопочным переключателем.
Для индикации режима разряда применяется диод желтого цвета, после снижения емкости зарядное устройство автоматически переходит в режим зарядки батарей. В процессе зарядки повышается температура корпуса батарейки, в блоке имеется датчик, который отключает подачу тока при достижении порогового значения.
Реверсивный зарядный блок относится к категории профессиональных изделий, отличается наличием микропроцессорного контроллера. Оборудование подает продолжительные импульсы зарядки, которые чередуются с кратковременным разрядом (время цикла изменяется в соответствии с установленным алгоритмом).
Оборудование позволяет поддерживать работоспособное состояние источника тока и продлевает срок службы Ni-Cd-батарей.
Процесс разряда и заряда Ni-Cd-аккумуляторов
В процессе заряда батареи на положительном электроде, выполненном из оксида никеля, происходит химическая реакция с выделением свободного электрона. На кадмиевом отрицательном электроде проходят дополнительные реакции.
При перезарядке элемента происходит выделение атомов кислорода, которые затем подаются через пористый сепаратор к отрицательному полюсу для последующего восстановления. Постоянство цикла восстановления обеспечивает поддержание стабильного давления газа внутри замкнутого корпуса.
При переразряде на отрицательном электроде формируются атомы водорода, который затем окисляется на никелевом положительном элементе. Из-за низкой скорости этого процесса возможно накопление газа. Для устранения эффекта выделения водорода в N-Cd-батареях всегда применяются отрицательные электроды, имеющие больший объем, чем положительные.
Процесс разряда никель-кадмиевых батарей
На процедуру разряда батарей, построенных на основе никель-кадмиевой композиции, влияют несколько факторов:
- конфигурация и строение электродов;
- схема и толщина сепаратора;
- количество электролита и его химический состав;
- плотность сборки;
- конструктивные особенности батареи.
Конфигурация корпуса и площадь электродов учитываются при выборе типа аккумулятора, соответствующего условиям работы. Например, дисковые батареи с увеличенным сечением электродов, выполненных по технологии прессования, применяются в условиях продолжительного разряда. Устройства обеспечивают плавное снижение емкости и напряжения до 1,1 В. Остаточная емкость составляет до 10%, она падает в ходе дальнейшей разрядки до 1 В.
Конструкция цилиндрического элемента не позволяет увеличивать ток разряда до значений выше 20% от номинальной емкости.
Причиной является невозможность обеспечения равномерного функционирования активной массы по всему сечению электродов.
Для устранения недостатка практикуется уменьшение диаметра электродов с одновременным увеличением количества деталей. При использовании 4 элементов обеспечивается увеличение тока до 55-60% от емкости батареи.
Для повышения эффективности работы используются аккумуляторы никель-кадмиевого типа с электродами, выполненными из металлокерамического композита. Детали отличаются пониженным внутренним сопротивлением, обеспечивая поддержание напряжения не ниже 1,2 В до разряда на 90% от заявленной производителем емкости.
При снижении напряжения на клеммах до 1,0 В емкость батареи снижается до 3% от стартового значения. При подключении внешней нагрузки ток разряда превышает номинальную емкость аккумуляторных элементов в 3-5 раз.
Батареи цилиндрического типа АА или ААА оснащаются электродами рулонной конструкции. Устройства обеспечивают ток в цепи до 10 раз выше номинальной емкости. Для обеспечения максимальных характеристик требуется поддержание температуры источника тока в диапазоне 18-22°С.
При нагреве емкость элементов снижается незначительно, при охлаждении батареи до отрицательных температур начинается снижение емкости (пропорционально току). Этот эффект возникает из-за роста сопротивления электролита и материала электродов.
При дальнейшем снижении температуры в замкнутом объеме электролита начинают формироваться кристаллы. Состав и количество твердых фракций зависят от состояния элемента и степени охлаждения. При полном замерзании электролита прекращаются электрохимические процессы, что приводит к падению напряжения до нулевой отметки.
Производители никель-кадмиевых батарей не рекомендуют использовать изделия при температуре ниже -20°С. Существуют модификации, рассчитанные на охлаждение до -40°С, но сколько отработает батарея при таких условиях, неизвестно.
Процесс заряда никель-кадмиевых батарей
При восстановлении емкости никель-кадмиевых источников тока производится принудительное ограничение степени зарядки. В процессе зарядки происходит выделение кислорода, который повышает давление внутри корпуса батареи, проходящие электрохимические процессы снижают эффективность использования поступающего тока.
Часть подводимой электроэнергии преобразуется в тепло, в конструкции батареи предусмотрен дренажный клапан, который стравливает излишки газа при росте давления выше допустимого.
Долговечность аккумулятора зависит от того, каким током производится зарядка. Для обеспечения максимального эффекта сила тока устанавливается на уровне 1,6-2,0 от номинальной емкости заряжаемого элемента. Конструкция батареи позволяет вести зарядку при температуре от 0° до 40°С, но рекомендуется выполнять операцию при нагреве до 10-30°С.
При попытке зарядить замерзшую батарею образующийся кислород не поглощается материалом отрицательного электрода, что приводит к росту давления и деформации металлического кожуха аккумулятора.
При повышении температуры выделение ионов кислорода на положительном электроде происходит быстрее, что ускоряет процедуру восполнения емкости. При поддержании стабильной температуры интенсивность зарядки регулируется силой тока, подаваемого на клеммы, который изменяет интенсивность выделения ионов.
При этом скорость поглощения не зависит от степени нагрева, этот параметр определяется конструкцией никель-кадмиевого элемента.
Поскольку интенсивность поглощения кислорода зависит от конфигурации электродов, конструкции сепаратора и объема электролита, то возможно создание батареек, допускающих ускоренную зарядку. Для этого применяются источники тока с увеличенным числом электродов, имеющих уменьшенное сечение. Например, цилиндрические элементы заряжаются в 2-3 раза быстрее плоских аккумуляторов.
Также существуют методики зарядки никель-кадмиевых аккумуляторов с деградировавшим электролитом. В корпусе элемента сверлится отверстие, через которое закачивается дистиллированная вода. Если производится восстановление аккумуляторной банки, собранной из нескольких батарей, то предварительно определяются детали с напряжением на клеммах около 0 В.
Заполненные водой аккумуляторы выдерживаются при комнатной температуре на протяжении 10-12 часов, затем на выводы подается напряжение, позволяющее активировать электрохимические процессы.
После появления на выходах напряжения, отличного от 0 В, производится стандартная зарядка. Рекомендуется выдержать источники тока 2-3 дня, а затем провести контрольный замер напряжения. В случае его падения выполняется повторная доливка дистиллированной воды (объем зависит от размера корпуса).
Если напряжение не снизилось, отверстия заделывают, а элементы 2-3 раза заряжают и разряжают, при необходимости производится сборка компонентов в единую банку.
Режим заряда Ni-Cd-аккумулятора
При стандартном алгоритме восполнения заряда на протяжении 14-16 часов выполняется подача постоянного тока силой 10% от емкости батареи (исходное напряжение на клеммах аккумулятора составляет 0,9-1,0 В).
Дополнительные рекомендации по зарядке указываются производителем АКБ. Например, при зарядке цилиндрической батареи сила тока составляет 20% от номинальной емкости, а время восполнения емкости не превышает 6-7 часов. При увеличении тока до 30% время зарядки падает до 4 часов.
Существуют специальные серии аккумуляторов, позволяющие восстанавливать емкость за 1-1,5 часа. При ускоренном режиме используются различные средства контроля (по времени и по температуре корпуса). При ускоренной зарядке происходит активное газообразование, и если нет контроля, то наступает быстрая деградация элемента или разрыв корпуса.
Восстановление заряда Ni-Cd-аккумулятора состоит из 2 этапов:
- Фаза начальной зарядки никель-кадмиевого аккумулятора характеризуется увеличением напряжения на клеммах, а затем происходит стабилизация значения, что фиксируется микропроцессором зарядного устройства. Ток зарядки устанавливается на уровне до 200% от емкости аккумулятора, часть зарядных блоков оснащена переключателем, позволяющим выбрать вид импульса при подаче напряжения.
- После полной зарядки батареи происходит снижение напряжения, что является сигналом к прекращению подачи тока на клеммы. Параметр падения обозначается DP (Delta Peak), от точности замера значения зависит качество зарядки, также она влияет на снижение риска перезаряда батареи, сопровождаемого повышенным газообразованием.
Часть зарядных устройств позволяют корректировать параметр DP вручную, рекомендуется установка корректора в минимальное положение.
Профессиональные зарядные блоки производят заряд аккумулятора по ступенчатой методике с одновременным контролем температуры корпуса (не допускается прогрев выше 50°С). Ступенчатый алгоритм позволяет снизить время зарядки стандартных батарей.
Для восполнения первых 10-15% емкости используется ток силой до 100% от емкости, затем происходит плавное увеличение этого параметра до 150%. После зарядки батареи на 90% сила тока снижается в 3 раза, что позволяет уменьшить газообразование и исключает вредный эффект перезаряда Ni-Cd-аккумулятора.
После отключения питания внутри аккумулятора продолжаются электрохимические процессы, связанные с преобразованием веществ на поверхности электродов. Затем начинается постепенное выравнивание скорости выделения ионов кислорода на положительном электроде и интенсивности поглощения вещества кадмиевым отрицательным элементом.
Давление внутри батареи падает, но при предварительном перезаряде источника тока снижение давления занимает до 5-6 часов.
Источник