Бестрансформаторная зарядка для аккумуляторов

Автоматическое зарядное устройство с бестрансформаторным питанием.
Универсальный блок повышенной мощности для широкого спектра аккумуляторных батарей 3-27В (3-100Ач). Как правильно зарядить автомобильный аккумулятор: одноэтапная и трёхэтапная зарядки.

Начну необычно!
Шедевральностью приведённая бестрансформаторная схема не блещет! Не блещет родная ни мрамором, ни златом, ни светом звёзд. Мало того, с лёгкость может долбануть зазевавшегося гражданина электрическим разрядом, посредством чего привести его организм в состояние глубокой печали, беспокойства и хаотичности мыслей.

Теперь о хорошем.
Простота, подкупающий функционал и радующие глаз массогабаритные показатели электроизделий, обозначенных в заголовке, погрузили меня в размышления о целесообразности поиметь в хозяйстве именно бестрансформаторное зарядное устройство. Мотивом погружения предшествовала ниоткуда вдруг выросшая разовая потребность срочно оживить довольно мощный АКБ.

Результатом мыслительного процесса явилось универсальное автоматическое зарядное устройство для мощных аккумуляторов напряжением 3-27 В и собственной ёмкостью 3-100 Ач.

Рис.1

Основой устройства является ёмкостный балластный элемент, образованный конденсаторами С1-С5, включение и выключение которых производится соответствующими тумблерами.
Реактивные сопротивления этих конденсаторов и мостовой выпрямитель Br2 образуют источник стабильного и неизменного постоянного тока, величина которого выбирается исходя из рекомендаций производителя АКБ. Значения этих токов могут выбираться любыми из диапазона 0,3-9,3А с шагом 0,3А.

Для предохранения диодов выпрямителя от резкого скачка тока в момент включения прибора, в него введено устройство мягкого пуска, состоящего из резистора R1 и реле Rel1, закорачивающего данный резистор через некоторое время после окончания переходных процессов.
Важный момент! Переключатель S1 — это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп — 2.
Резистор R3 предназначен для разряда балластных конденсаторов после выключения зарядного устройства.

Читайте также:  Чем протирать контакты аккумулятора

А всё-таки, каким током следует заряжать аккумулятор?

Оптимальным током является величина, равная 1/10 (± 10%) от полной ёмкости АКБ — это стандартные рекомендации производителей на обслуживаемые автомобильные аккумуляторные батареи.
При меньшем токе заряда процесс будет пропорционально замедляться, при большем — начнёт плохеть пациенту.
Для необслуживаемых изделий некоторые производители настоятельно рекомендуют использовать номинальный ток заряда не более 1/20 от ёмкости аккумулятора.

Ясен пипидастр, что в определённый момент АКБ наберёт полный заряд и на продолжающееся воздействие извне начнёт реагировать бурным химическим негодованием с неприятным выделением газа. Этот неловкий момент следует предотвратить и отключить зарядное устройство в момент 20%-го превышения значения напряжения на клеммах от паспортной величины характеристики аккумулятора.
Таким образом, для 12В батарей процесс заряда следует стопорнуть при напряжении на выводах АКБ 14,4 В, для 24 вольтовых — при 28,8 В и т.д.

Однако вернёмся к схеме.
Ответственным за состоянием здоровья аккумулятора назначен компаратор DA1, который сравнивает напряжение на АКБ с уровнем, установленным переменным резистором R5.
В момент совпадения этих величин, на выходе компаратора появляется высокий уровень напряжения, который посредством транзисторного аналога тиристора (транзисторы T1, T2) замыкает реле Rel1 на землю, что в свою очередь приводит к отключению блока от сети и, соответственно, к прекращению процесса заряда.
Аналогичный процесс происходит и при желании вручную отключить зарядное устройство от сети. В этом случае высокий уровень напряжения подаётся на аналог тиристора посредством замыкания контактов переключателя S1.2.

Интегральный регулируемый стабилизатор Vr1 формирует стабильное напряжение в диапазоне 3-27В. Его низкое выходное сопротивление позволяет исключить влияние входного сопротивления вольтметра на формируемые уровни напряжения при желании сделать этот прибор внешним и отключаемым после установки необходимого значения напряжения.

Стабилитроны D1, D2 поддерживают напряжение питания микросхем Vr1 и DA1 на уровне 30В, диод D3 не позволяет выйти напряжению на входе компаратора за допустимые пределы, светодиод Led1 служит для индикации включённого состояния устройства.

С1-С5 выполнены в виде батарей из параллельно соединённых неполярных конденсаторов экзотического номинала 4,7мкФ x 400в: С1 — 1шт, С2 — 2шт, С3 — 4шт и т.д. Всего 31 штука, не больше, не меньше — хоть из-под земли достань, да выложи!
На самом деле не так уж всё и грустно. Изделия, заказанные у наших китайских друзей, уложатся в небольшую коробчёнку и не сильно обременительную сумму, не превышающую 1000 российских тугриков.

Диодный мост Br2 следует выбирать с некоторым запасом по максимальному току. Я остановил свой выбор на 15-ти амперном экземпляре. При необходимости работать с высокими токами заряда этот элемент необходимо снабдить радиатором, исходя из рассеиваемой мощности Pрас ≈ Iзар x 1,5 .
Рассчитать размер радиатора можно по ссылке Ссылка на страницу.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания должен находиться в районе 20мА, как правило, в документации такие реле называются — High Sensitive. При наших мощностях таким током срабатывания обладают реле с номинальным рабочим напряжением 24 вольта.

Тумблеры: S1 должен быть рассчитан на максимальный ток — не менее 10А, S2-S6 — не менее 5А.

Компаратор DA1 может быть любым, поддерживающим однополярное 30-вольтовое питание и имеющим входные токи — не более 100nA.

А какие условия безопасности надо выполнять при работе с бестрансформаторными источниками питания мы довольно подробно обсудили на странице Ссылка на страницу.

И под занавес приведу более долгий, но продвинутый способ зарядить АКБ за несколько этапов.
К преимуществам этого способа следует отнести то, что аккумулятор получает полный заряд и восстанавливает свою ёмкость практически на 100 процентов. Недостаток заключается в увеличении времени процесса и необходимости нескольких подходов к заряжаемому.

1. Сначала устанавливаем ток, равным 0,1 от номинальной ёмкости АКБ. Для батареи 55 А-ч это составит 5,5 ампер (в нашем случае — 5,4). В таком режиме заряжаем до напряжения на выводах АКБ 14,4 вольта. Устанавливаем это напряжение регулятором, далее ждём, пока зарядник вырубится;

2. Снижаем ток заряда в два раза (до 2,7 ампер), заряжаем до напряжения на выводах АКБ 15 вольт, ждём, пока зарядник вырубится;

3. Снижаем ток заряда ещё в два раза (до 1,2 ампера), заряжаем до напряжения на выводах АКБ 15,5 вольт, ждём, пока зарядник вырубится, если через 5-6 часов этого не произошло, вырубаем устройство вручную.

А теперь — о самом важном.
Безтрансформаторные источники питания являются устройствами, не обладающими гальванической развязкой от сети, поэтому все подключения проводов к аккумулятору необходимо провести до втыкания вилки в розетку.

В процессе зарядки блудить шаловливыми ручонками по оголённым проводам и клеммам АКБ не следует — есть шанс словить переменку (не слишком большой, но весьма неприятный. ).

По окончании процесса, точно также — сначала выдернуть штепсель из розетки, а уже потом отсоединять аккумулятор.

Итак. Подсоединили АКБ, воткнули вилку, установили ток заряда, повернули R5 в нижнее по схеме положение — теперь можно нажать включатор и начинать зарядку. После этого следует установить переменный резистор в положение, соответствующее необходимому уровню отключения зарядного устройства, контролируя эту величину по показаниям вольтметра.
Если аккумулятор не будет подключён к зарядному устройству, или отвалится какой-либо провод, сработает схема защиты, что приведёт к отключению блока от сети.

Источник

Особенности, элементы и требования к бестрансформаторным зарядным устройствам

Бестрансформаторное зарядное устройство используют как альтернативу обычным ЗУ автомобиля. Механизм не занимает много места и не требует больших финансовых затрат. Отличается надежностью. Можно собрать самостоятельно из простых элементов. Подобный принцип работы применяется давно в фонариках.

Предназначение

До запуска бортовой сети машины, энергия поступает от батареи аккумулятора, которая не вырабатывает электричество.

Аккумулятор представляет собой источник электрической энергии, необходимый для питания автомобиля. Потраченный потенциал возобновляется благодаря генератору.

Использованную энергию в полной мере не компенсирует даже постоянно работающий АКБ. Поэтому иногда возникает потребность в применении других накопительных видов энергии.

Бестрансформаторное ЗУ используют для зарядки аккумуляторов типа АА и ААА.

Преимущества и недостатки

При отсутствии трансформаторов напряжения удобно использовать специальное зарядное устройство. Плюсы такого механизма:

  • при долгосрочной эксплуатации не перегревается;
  • можно использовать для всех видов аккумуляторов разной мощности (при этом увеличивают или уменьшают номинал конденсаторов);
  • можно подключать совершенно разряженную батарею без первичного уменьшения напряжения;
  • система защищена на выходе от короткого замыкания;
  • водителю необязательно следить за процессом подзарядки;
  • легкая схема с использованием незначительного количества элементов;
  • небольшой размер.

Главный минус установки – отсутствие гальванической развязки. Зарядка осуществляется непосредственно от сети, блок конденсаторов выступает проводником напряжения.

Основные элементы

Чтобы постоянно не искать трансформатор, лучше пользоваться несложным устройством без понижающих элементов. В состав схемы бестрансформаторного зарядного устройства входят такие детали:

  • конденсаторы(не меньше четырех);
  • светодиод;
  • резистор;
  • диодный мост.

Внимание! Конденсаторы заменяют трансформатор. Размещаются параллельно. Рекомендуется использовать оксидные конденсаторы одного вида.

Если применять импортные модели, размеры данной системы можно сократить. Диоды устройства можно выбрать разные, которые рассчитаны на определенную величину тока и обратное напряжение. Для блока подходят диоды Д7Ж и Д226Б, только вес и размеры механизма вырастут.

Резистор необходим для ликвидации напряжения, которое остается после отсоединения механизма от основного источника питания. Диодный мост размещают сразу за конденсатором. Он эксплуатируется при значении электрического тока до 6 Ампер. К выводам присоединяются провода, которые тянутся на АКБ для питания. В целях безопасности, чтобы исключить удар током, нельзя касаться этих проводов во время эксплуатации зарядного устройства.

Основные требования к компонентам механизма

Необходим обязательно выпрямитель, так как аккумулятор заряжается от стабильного электрического тока, а напряжение в сети изменяется. В устройстве применяют готовый диодный мост или делают самостоятельно из выпрямительных диодов. В первом варианте, следует найти мост с напряжением больше 400 В и значением тока не меньше 3 А.

Общая емкость приспособления конденсаторов 8 мкФ. На выходе ток достигает значения 1А. Уровень напряжения составляет от 180 до 200 Вольт.

Внимание! Нельзя касаться выходных клемм и проводов при включении с сетевым напряжением 220 Вольт.

Что касается короткого замыкания, то система не выходит из строя, лишь происходит незначительное выделение тепла в зоне диодов.

Конденсаторы рекомендуется выбирать со значением 400 Вольт. Напряжение в электрической сети изменяется, происходят большие перепады.

После выключения устройства, на конденсаторах остается напряжение. Поэтому устанавливают также конденсатор (8-10 мкФ) или резистор мощностью от 210 до 810 кОм, чтобы происходил процесс разрядки. Размеры системы позволяют хранить ее в небольшой коробке.

Настройка ЗУ

Использовать механизм можно, когда есть сетевые предохранители. До первого включения рекомендуется проверить правильность сборки и креплений. Даже незначительные погрешности могут спровоцировать поломку многих компонентов, взрыв конденсаторов. Поэтому устройство желательно накрыть картонной коробкой. Правильно составленный механизм начинает работать сразу.

Главное, необходимо подобрать резисторы R6, R8 с целью регулировки границ колебаний тока во время зарядки. Поэтому к выходу системы подсоединяют батарею аккумуляторов в разряженном состоянии. С помощью вышеуказанных элементов устанавливают амперметром РА1 границы управления тока резистором R7.

В случае, когда первоначальное состояние движка детали марки R7, показатель тока не равняется нулю, нужно снизить сопротивление в звене R8. При нулевом токе заряда, в условиях, когда двигатель R7 находится не в крайней точке, сопротивление такого резистора необходимо повысить. Потом движок резистора R7 фиксируют в максимальном состоянии. При величине заряженного тока ниже максимального, сопротивление в резисторе R6 нужно убавить, а когда выше – усилить.

Переключатель устанавливают в позицию ручного режима. До конца заряжают автомобильную батарею, не забывая измерять специальным прибором напряжение тока.

На следующем этапе отключают тумблер и переводят в положение «Авт.», а регистор R11 – в режим наибольшего сопротивления. Опять подсоединяют механизм к электрической сети, снижают сопротивление в звене R11. Установку можно эксплуатировать, когда начнет работать реле К1.

Важно! Во время наладки в применении ЗУ, нужно не забывать о том, что от сети нет гальванической развязки. Поэтому включать и выключать механизм от батареи аккумулятора рекомендуется лишь, когда вилка с проводами не включена в электрическую сеть.

Бестрансформаторное зарядное устройство для автомобильного аккумулятора отличается простой схемой. Его применение помогает автолюбителям сократить финансовые затраты. При правильном использовании установки, гарантирована безопасность.

Источник

Бестрансформаторное зарядное устройство

Предлагаю маломощное зарядное устройство (ЗУ) с гасящим конденсатором (рис.1). Оно предназначено для зарядки аккумуляторов с максимальным выходным током 140 мА и напряжением до 20 В. Транзисторная пороговая схема позволяет установить зарядное напряжение 13,8. 14,4 В (для аккумуляторов — 12,6 В), при котором происходит отключение зарядного тока, т.е. предотвращается перезаряд аккумулятора. Этому способствует и постепенное снижение зарядного тока при увеличении напряжения на аккумуляторе.


Рис.1. Принципиальная схема зарядного устройства

В схеме ЗУ особое внимание уделено безопасности. Фазовый провод «Ф» сети 220 В присоединен через предохранитель и ограничитель пусковых токов R1 к гасящему конденсатору С1, другой вывод которого и нулевой провод сети «0» присоединены к конденсаторному делителю напряжения.

Через диодный мост VD1. VD4 напряжение с конденсаторов С2, СЗ подведено к ключевой схеме на VT1. VT3. Резистор R7 — шунт индикатора тока заряда VD5. Зарядный ток в виде широких импульсов частотой 100 Гц поступает через ключ VT1 и диод VD7 в аккумулятор. В паузах между зарядными импульсами аккумулятор разряжается для десульфатации через пороговую схему на VT3 и VD6.

Резистором R12 устанавливают максимальное напряжение заряда аккумулятора. При его достижении открывается транзистор VT3, a VT2, VT1 закрываются, ток заряда прекращается, и гаснет зеленый светодиод VD5, индицирующий заряд. Через некоторое время из-за саморазряда напряжение на аккумуляторе уменьшается, и пороговый триггер на VT2, VT3 вновь включает зарядный ток, открывая VT1. Мигание VD5 с периодом около 5 с показывает заряженное состояние аккумулятора. В таком режиме аккумулятор может питать звонковую цепь или люминесцентную лампу дежурного освещения. При теперешних «веерных» отключениях это немаловажное свойство ЗУ.

Наиболее ответственная деталь ЗУ — конденсатор С1. Здесь можно использовать 2 конденсатора типа К73-14 (1 мкФ х 400 В) или 4 К73-17 (0,47 мкФ х 630 В), соединенных параллельно. Электролитические конденсаторы С2, СЗ — К50-35 (22 мкФ х 63 В). Импортные «электролиты» применять нежелательно, т.к. они обладают большими потерями при перезарядке.

Диоды VD1. VD4 можно применить любые с Uoбp > 100 В и Imax > 200 мА. Неплохо работают КД103А и 1N4007. Транзисторы — с Uкэ > 80 В.

При первом включении ЗУ нужно установить движок регулятора R12 в нижнее по схеме положение. Должен светиться зеленый светодиод VD5. В процессе работы стоит проверить отсутствие нагрева VT1. Устранить перегрев можно уменьшением сопротивления R9 или заменой VT1, VT2 на транзисторы с большим β.

При достижении U = 13,8 В вращением R12 нужно выключить зарядный ток.

Подключать ЗУ к сети 220 В следует с применением индикаторной отвертки или неоновой лампочки ТН-0,2 с резистором 240 кОм (0,5 Вт) для определения фазного провода в розетке.

Для зарядки 6-вольтовых аккумуляторов стабилитрон VD6 нужно заменить на КС133 или КС147.

При отключении аккумулятора от ЗУ напряжение на выходе ЗУ (катод VD7) равно нулю. Относительно нулевого провода сети оба выходных провода ЗУ имеют потенциал около 30 В. Замыкание выходных проводов ЗУ не выводит его из строя, т.к. максимальный ток ограничен С1 на уровне 140 мА.

Источники:

  1. О.Ховайко. Источники питания с конденсаторным делителем напряжения. — Радио, 1997, N11, С.56.
  2. А.Сорокин. Зарядно-десульфатирующий автомат. — Радиолюбитель, 1998, N10, С.30.
  3. А.Трифонов. Выбор балластного конденсатора. — Радио, 1999, N4, С.44.
  4. С.Бирюков. Расчет сетевого источника питания с гасящим конденсатором. — Радио, 1997, N5, С.48.
  5. С.Бирюков. Цифровые устройства на ИМС, 1999.
  6. Р.Левицкий. Об использовании конденсаторов в цепях переменного тока. — Радио, 1969, N8, С.49.
  7. Импульсное зарядное устройство. — Радио, 1995, N8, С.61.

Источник

Оцените статью