Тестер емкости батареек на базе Arduino
На сегодняшний день на прилавках магазинов можно увидеть огромное количество видов батареек типоразмеров AA и AAA от разных производителей. При таком ассортименте ни на одной батарейке покупатель не найдет информации о том, какое количество энергии она способна отдать. Вместо этого, на каждой из них красуется надпись типа «Плюс», «Super», «Ultra» и пр., при этом цены на них очень разные. Многие люди, при покупках в магазинах, сравнивают товары по соотношению цена-киллограм или цена-литр. В случае с батарейками такого критерия нет. Поэтому автор решил, что настало время экспериментов, и сконструировал тестер емкости батареек, который позволил сравнить их по одному из важных параметров.
Идея была очень простой: необходима была схема, которая полностью разряжала бы батарейку, и при этом измеряла количество энергии, которую она производит, в Джоулях и в Ватт-часах. Наличие платы Arduino и модуля ЖК индикатора позволило создать отдельное компактное устройство. После сборки первого варианта, были добавлены дополнительные функции: измерение окружающей температуры во время тестирования и использование USB интерфейса для передачи данных в терминальную программу для дальнейшего анализа. Введение датчика окружающей температуры обусловлено зависимостью емкости батарейки от температуры.
Следует отметить, что эта конструкция не является профессиональным измерительным прибором и может использоваться для относительного сравнения различных батарей по важным параметрам с использованием одинаковой нагрузки.
Схема устройства достаточно проста, т.к. основана на платформе Arduino UNO SMD. Принципиальная схема платформы Arduino UNO показана на Рисунке 1. На схеме изображен микроконтроллер Atmel ATmega8, автор использовал вариант платы с микроконтроллером ATmega328, но конфигурация выводов и подключение в схеме для этих микроконтроллеров идентичны.
Рисунок 1. | Принципиальная схема отладочной платы Arduino UNO. |
К плате Arduino подключается модуль 2-строчного ЖК индикатора, цифровой датчик температуры DS18B20 и держатель батареи с нагрузочным резистором (Рисунок 2).
Рисунок 2. | Принципиальная схема тестера батареек на базе платформы Arduino UNO |
Схема работает следующим образом: при установке тестируемой батарейки в держатель, микроконтроллер измеряет напряжение на постоянной нагрузке каждую секунду, до тех пор, пока напряжение не упадет ниже уровня 0.2 В. Для упрощения схемы использовалась резистивная нагрузка 5.5 Ом, образованная четырьмя включенными параллельно резисторами номиналом 22 Ом (оптимальным было бы включение одного мощного резистора номиналом 4.0 Ом).
Плата Arduino питается от интерфейса USB или от внешнего источника питания, к тестируемой батарейке подключен только нагрузочный резистор.
Тестер смонтирован в подходящий корпус, в котором размещается плата Arduino, модуль ЖК индикатора и плата на которой установлены внешние компоненты (датчик температуры, резистор регулировки контрастности индикатора, нагрузочные резисторы).
Работа с тестером
После подачи питания и инициализации, тестер ожидает установки тетсируемой батарейки в держатель, о чем свидетельствует сообщение на экране индикатора. После установки батарейки на испытания начнется цикл измерений напряжения и температуры один раз в секунду. На экране индикатора будут отображаться результаты: совокупная энергия в Джоулях и Ватт-часах, напряжение на батарейке, температура окружающего воздуха и время тестирования. Эти же данные отправляются один раз в секунду по USB интерфейсу в терминальную программу, чтобы их можно было сохранить и проанализировать.
Рисунок 3. | Отображение данных на ЖК индикаторе тестера батареек |
При достижении напряжения батарейки уровня 0.2 В тестирование прекращается и на экране индикатора отображаются конечные результаты.
Результаты тестирования батареек различных производителей
Автор, для тестирования, использовал 10 щелочных батареек различных брэндов. Каждая была протестирована с целью вычисления ее емкости. На графике ниже изображено изменение напряжения разных батареек, при подключенной постоянной нагрузке.
В основном для теста в магазинах приобретались батарейки в комплекте из 4 шт., поэтому интерес представляет соотношение стоимости батарейки и ее емкости.
Источник
Измерение уровня заряда аккумулятора на Ардуино
Отслеживание уровня заряда аккумулятора или батареи является одной из основных задач при разработке автономных устройств. Особенно она актуальна для устройств, которые работают удалённо и сообщают о своём статусе, используя, например, GSM канал*. Даже когда устройство находится рядом с вами, индикация уровня заряда аккумулятора поможет сделать его использование более удобным. В данной статье мы рассмотрим простой способ отслеживания уровня заряда аккумулятора или батареи при помощи Ардуино.
*Знакомые с GSM модулями могут возразить, что в их составе уже присутствуют средства мониторинга заряда аккумулятора, и не нужно изобретать велосипед. Справедливое замечание. Но при условии, что для GSM модуля не используется стабилизация напряжения, скажем, от 12-вольтового аккумулятора. В этом случае модуль не сможет оценить уровень заряда аккумулятора. Таким образом, не стоит преуменьшать актуальность данной темы.
Теория
Предлагаемый способ отслеживания уровня заряда основан на измерении напряжения источника питания. Возьмем, к примеру, литий-ионный аккумулятор. В процессе разрядки его напряжение изменяется от 4.2 В до 3 В. Выполняя периодические замеры напряжения и сопоставляя полученный результат с приведённым диапазоном 4.2. 3 В, мы можем оценить уровень заряда. Но не всё так однозначно. Дело в том, что напряжение аккумулятора при разряде изменяется не линейно. Это видно из графика разряда литий-ионного аккумулятора, который легко найти в google по запросу li-ion discharge graph:
Данный график позаимствован с сайта batteryuniversity. На нём отражён процесс разряда аккумулятора Panasonic NCR18650B 3200мАч разными токами от 0.2C до 2C. Как видите, напряжение аккумулятора изменяется более-менее линейно лишь при разряде большими токами. Здесь можно вспомнить математику и посчитать процент оставшегося заряда по линейной формуле. Но это, скорее, частный случай. Пожалуй, более актуальны случаи, когда устройство потребляет незначительные токи, поэтому ориентироваться мы будем на красную и синюю кривые.
Таким образом, чтобы получить наиболее точное представление об оставшемся заряде аккумулятора или батареи на основе напряжения, нужно иметь соответствующий график разряда.
Следующий момент, который я беру во внимание – это то, что высокая детализация уровня заряда (в тех же процентах, которые дают нам 100 значений) бывает нужна крайне редко. В большинстве случаев достаточно понимания: когда уровень заряда находится в «зелёной зоне», когда в «жёлтой», а когда нужно быть готовым к отключению устройства из-за разряда аккумулятора. Поэтому наиболее рациональным представляется подход, когда мы выделяем 3-4 пороговых напряжения и относительно них определяем уровень заряда. Грубо говоря, если напряжение литий-ионного аккумулятора больше 4 В, то заряд высокий; если меньше 3.2 В – аккумулятор вот-вот разрядится, а между этими двумя значениями выделяем еще несколько зон. Если необходимо выразить заряд именно в процентах – пожалуйста: выделяем 10 зон и показываем результат десятками (10%, 20% и т.д.).
Аналогичные графики разряда можно найти и для других элементов питания, смысл будет тот же.
Реализация
Итак, задача поставлена: необходимо измерять напряжение источника питания нашего устройства. Я бы выделил 2 возможных варианта реализации:
- измерять напряжение, используя АЦП Ардуино;
- воспользоваться датчиком напряжения, например, INA219.
Первый вариант хорош тем, что для него ничего не требуется. Разве что пара резисторов. А датчик напряжения – это уже дополнительный компонент. Зато он позволит более точно измерять напряжение. Кроме того INA219 измеряет потребляемый ток и мощность, поэтому имеет потенциал для дальнейшего развития в плане мониторинга питания (с его помощью можно построить ту же кривую разряда аккумулятора, определить его ёмкость, спрогнозировать время работы устройства), но это уже отдельная тема.
Вариант 1. Измерение напряжения при помощи Ардуино.
Все платы Ардуино имеют в своём составе АЦП. У популярных плат (UNO, NANO, MEGA2560) разрядность АЦП составляет 10 бит, у более продвинутых (Due, Zero) – 12 бит. АЦП позволяет измерять напряжение в диапазоне от 0 В до опорного напряжения Vref. Значение Vref в общем случае соответствует напряжению питания платы – 5 В или 3.3 В, но может быть привязано к внутреннему стабилизатору. Для лучшего понимания принципов использования АЦП предлагаю рассмотреть следующий скетч.
Загрузите скетч в Ардуино, соедините A0 с выводом 5V и откройте монитор порта. Вы должны увидеть следующий результат:
Этот скетч измеряет напряжение на входе A0 и выводит результат в монитор порта. Разрешение АЦП используемой мной Ардуино УНО составляет 10 бит, а значит, результатом измерений будет число от 0 до 1023 (2^10 значений). При этом значение 0 будет говорить об отсутствии напряжения, а максимальное значение – 1023 – о его равенстве (а так же превышении, что мы не будем рассматривать) опорному напряжению Vref, каким бы оно ни было. У меня в монитор порта выводится как раз число 1023. Поскольку опорным напряжением АЦП по умолчанию является напряжение питания Ардуино – 5 вольт, выдаваемые USB портом компьютера (разумеется, это не точное значение), можно утверждать, что напряжение на входе A0 тоже составляет 5 вольт.
Попробуем отсоединить A0 от вывода 5V и подсоединить к 3v3. Теперь у меня в монитор порта выводится значение 687. Зная опорное напряжение, нетрудно вычислить напряжение на A0:
(5 В / 1024) * 687 = 3.35 В
Для получения более точного результата следует измерить напряжение, выдаваемое USB портом.
Если же вывод A0 соединить с «землёй», то в монитор порта будет выводиться значение 0.
Вернёмся к нашей задаче. Питание от аккумулятора не всегда предполагает наличие стабильного напряжения, которое может использоваться как опорное для АЦП. В таких случаях в качестве Vref следует использовать напряжение от внутреннего стабилизатора Ардуино. Для большинства плат, в том числе Ардуино УНО, это напряжение составляет 1.1 В. Это означает, что измеряемое напряжение необходимо понизить при помощи делителя, чтобы оно не превышало 1.1 В. Здесь нам помогут пара резисторов номиналом в несколько десятков-сотен кОм, включенные по следующей схеме:
Это простейший резистивный делитель напряжения. Он характеризуется коэффициентом передачи, который показывает, во сколько раз выходное напряжение будет меньше входного, то есть:
Сам коэффициент рассчитывается по следующей формуле:
Остаётся лишь подобрать номиналы резисторов таким образом, чтобы понизить напряжение аккумулятора до нужного нам уровня. Для измерения напряжения аккумулятора 18650 я выбрал номиналы 47k и 10k. Реальное сопротивление будет отличаться, поэтому их нужно обязательно измерить мультиметром. Выбранные мной номиналы дают коэффициент
0.175, что позволяет измерять напряжение до 1.1 В / 0.175 = 6,27 В. Ниже приведены схема, пример скетча, реализующий описанный функционал, и результат его работы. Предполагается, что Ардуино питается от аккумулятора, поэтому результаты выводятся на дисплей 1602, а не в Serial.
На фото видно, что результат измерения напряжения при помощи Ардуино и делителя не сильно отличается от того значения, что показывает мультиметр. Это хороший результат.
При подключении делителя я отказался от макетной платы в пользу пайки, чтобы избежать увеличения сопротивлений из-за плохого контакта.
Опорное напряжение, выдаваемое внутренним стабилизатором, не обязательно будет 1.1 В, и может отличаться от одного микроконтроллера к другому. Даташит допускает разброс от 1.0 до 1.2 В. Поэтому для получения более точных измерений можно вычислить значение Vref и использовать его в скетче при расчетах. Его легко найти путём измерения заранее известного напряжения (обозначим его как V(A0)):
Vref = V(A0) * 1024 / analogRead(A0)
Вариант 2. Использование датчика напряжения INA219.
После шаманства со всеми этими делителями и внутренними источниками опорного напряжения преимущество датчиков напряжения на базе специализированных микросхем очевидно. Они позволяют измерять напряжение (а некоторые ещё и потребляемый устройством ток) в широком диапазоне и с высокой точностью. INA219 – хороший пример такого датчика. Он потребляет не более 1мА, а в спящем режиме менее 15мкА, что весьма ценно при создании автономных устройств, в условиях энергосбережения. Подробное описание датчика и используемой далее библиотеки для работы с ним вы найдёте здесь: https://compacttool.ru/datchik-napryazheniya-i-toka-na-chipe-ina219
Для отслеживания уровня заряда аккумулятора 18650 при помощи INA219 и вывода результата на дисплей я соединил компоненты в соответствии со схемой:
В этот раз я решил выделить 10 уровней заряда, чтобы отображать его в процентах. Скетч и результат его работы ниже:
Заключение
Конечно, предложенный способ не претендует на высокую точность. Существуют специализированные микросхемы мониторинга питания, которые определяют оставшуюся ёмкость аккумулятора с учётом нагрузки и других параметров. Они находят применение в ноутбуках, телефонах и другой портативной технике. Но вряд ли вы найдёте что-то подобное в любительских проектах – не тот уровень. Таким образом, определение уровня заряда аккумулятора по напряжению – приемлемая альтернатива, не требующая серьёзных аппаратных или программных ресурсов.
Источник