Аморфные солнечные панели кпд

Содержание
  1. Аморфные солнечные батареи: изготовление, преимущества, область применения
  2. Технологии производства солнечных панелей из аморфного кремния
  3. Этапы совершенствования аморфных солнечных батарей из кремния
  4. Плюсы и минусы аморфных солнечных панелей
  5. Рекомендации по применению солнечных батарей из аморфного кремния
  6. Аморфные солнечные батареи
  7. Аморфные солнечные модули второго поколения
  8. Основные преимущества кристаллических аморфных батарей
  9. В чем недостатки тонкопленочных аморфных солнечных батарей
  10. Тонкостенные аморфные солнечные модули: конструктивные особенности
  11. Достоинства, недостатки и перспектива аморфных солнечных батарей
  12. Описание
  13. Поколения аморфных панелей
  14. Второе поколение панелей аморфных
  15. Преимущества
  16. Недостатки модулей аморфных
  17. Недостатки кремниевых устройств
  18. Область использования
  19. Дополнительное использование
  20. Деградация
  21. Особенности конструкции
  22. Изготовление
  23. Изготовление ФЭП аморфных
  24. Купить

Аморфные солнечные батареи: изготовление, преимущества, область применения

Дата публикации: 3 мая 2019

Создание первых образцов аморфных пленочных батарей стало новым открытием в сфере альтернативных источников электрической энергии. За несколько лет модель удалось усовершенствовать, добившись от простой конструкции выдающихся технико-эксплуатационных характеристик. Эксперты, занимающиеся исследованиями в области энергетики, утверждают: очень скоро аморфные солнечные панели займут лидирующее положение в своем сегменте и будут запущены в массовое производство.

Технологии производства солнечных панелей из аморфного кремния

Изготовление моделей солнечных панелей осуществляется с использованием тщательно очищенного кремния цилиндрической формы диаметром несколько десятков миллиметров. Заготовку режут на диски толщиной в несколько микрон, после чего подвергают легированию. В обработанной пластине образуются области с разной электрической проводимостью, в зависимости от количества электронов, – р-проводимостью и n-проводимостью. Соединение нескольких дисков в различных вариантах позволяет получить пластину, вырабатывающую электрическую энергию под воздействием света. В качестве основы для пластины кремния могут выступать:

  • специальные виды керамики;
  • стекло особой очистки;
  • кристаллы сапфиров и другие материалы, обладающие светопропускной способностью.

Благодаря безотходному характеру производства, готовые панели имеют относительно невысокую стоимость, что немало способствует их популярности.

Читайте также:  Билборды с солнечными батареями

Этапы совершенствования аморфных солнечных батарей из кремния

Быстрое развитие и постоянное усовершенствование технологии производства панелей позволило предложить на выбор сразу несколько поколений устройств:

  • первое поколение – так называемые однопереходные конструкции с относительно низким КПД до 5% и непродолжительным сроком службы;
  • второе поколение – доработанные модели с КПД до 8% и увеличенным сроком эксплуатации, идеальное сочетание качества и стоимости;
  • третье поколение – эффективные батареи с КПД до 12%, которые планируется запустить в массовое производство.

Не уступая своим прямым конкурентам – кристаллическим батареям – по уровню мощности, аморфные солнечные батареи значительно опережают их по доступности цене.

Плюсы и минусы аморфных солнечных панелей

В числе основных достоинств конструкций из кремния стоит отметить:

  • незначительную потерю мощности в условиях стабильного повышения температуры. В отличие от кристаллических моделей, теряющих до 20% первоначальной мощности, аморфные солнечные батареи сохраняют эффективность на всем протяжении солнечного сезона года;
  • возможность эксплуатации в условиях рассеянного освещения, благодаря которому объем вырабатываемой электроэнергии увеличивается на 20%. В свою очередь кристаллические панели в условиях рассеянного освещения практически бесполезны;
  • вопрос стоимости. Цена ватта мощности кремниевых батарей ниже, чем этот же показатель у кристаллических моделей. Удешевлению альтернативной энергии дополнительно способствует усовершенствование производственного процесса и применение инновационных технологических решений;
  • незначительный процент дефектов в готовом изделии за счет простой конструкции без сложных соединений элементов;
  • незначительную потерю мощности в условиях пасмурной погоды, когда кристаллические модели теряют до 25% в условиях недостаточного освещения или загрязнения поверхности.

Единственное, в чем проигрывают аморфные солнечные панели, – это пониженный КПД, в 2 раза отличающийся от уровня КПД кристаллических батарей. Однако этот недостаток полностью компенсируется перечисленными преимуществами.

Рекомендации по применению солнечных батарей из аморфного кремния

Благодаря преимуществам устройства можно без ограничений эксплуатировать:

  • при повышенной облачности;
  • жаркой погоде с повышением температуры воздуха до 55°С и выше;
  • минимальных ограничениях по весу и размеру источника энергии;
  • необходимости встроить батарею в стену или оконные проемы, установить непосредственно на фасад здания.

Использование в качестве основы под кремниевые пластины гибких материалов с хорошей светопропускной способностью позволяет использовать батареи в пошиве дизайнерских моделей одежды и аксессуаров. Кроме того, им находят полезное применение в бытовых условиях, для которых актуально получение недорогой электроэнергии. Возможно, дальнейшее совершенствование производства дополнительно расширит сферу применения кремниевых батарей и дополнительно снизит их себестоимость.

  • Отопление дома – просим помощи у Солнца
  • Студенческая разработка повышает эффективность солнечных батарей на 20%
  • Возможности солнечной энергии
  • Какой контроллер выбрать для солнечных батарей

Вам нужно войти, чтобы оставить комментарий.

Источник

Аморфные солнечные батареи

В сфере солнечных батарей аморфные солнечные батареи выходят в лидеры. Во всяком случае им прогнозируют такое светлое будущее. Тонкоплёночные фотоэлектрические солнечные модули по сравнению с кристаллическими имеют неоспоримые преимущества. Безусловно сегодня порядка 80% батарей выпускается в кристаллах, однако совсем скоро показатель будет меняться.

В настоящее время развитие пленочных аморфных солнечных батарей происходит ударными темпами, в этой области постоянно делаются все новые шаги для их массового внедрения. Широкое коммерческое будущее получили именно модули из аморфного кремния. В настоящий момент уже существует три поколения солнечных аморфных кремниевых батарей:

1. Однопереходные солнечные элементы. Они относятся к первому поколению аморфных кремниевых батарей. КПД таких батарей было крайне небольшое, порядка 5%, также такие батареи могли работать не более 10-ти лет, затем они просто приходили в негодность.

  1. Второе поколение было представлено теми же однопереходными батареями, однако более совершенными. В частности КПД был увеличен практически вдвое, да и срок эксплуатации их тоже увеличился.
  2. Батареи третьего поколения имеют уже серьезный КПД и могут уже конкурировать с кристаллическими. КПД уже составляет 12%. Срок эксплуатации также значительно увеличился и составляет более 15-ти лет.

Производятся и комбинированные солнечные модули, в которых имеются как аморфные элементы, так и кристаллические. Однако стоимость комбинированных батарей значительная, поэтому их использование носит ограниченный характер.

Аморфные солнечные модули второго поколения

Именно тонкопленочные аморфные однопереходные батареи на сегодняшний момент считаются наиболее перспективными в плане внедрения. Преимущества таких батарей очевидны. Прежде всего себестоимость составляющих элементов достаточно приемлемая. Аморфные батареи имеют лучшие по отношению с кристаллическими показатели мощности. Аморфные батареи имеют меньшую стоимость еще и потому, что для их производства требуется значительно меньше кремния, чем для изготовления кристаллических батарей.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Основные преимущества кристаллических аморфных батарей

Безусловно первым и основным преимуществом тонкопленочных аморфных модулей является их стоимость. Она намного ниже, чем у кристаллических батарей при том КПД, однако существуют и другие преимущества, которые являются решающими при выборе для потребителя. К основным преимуществам можно отнести:

  1. Если температура меняется на повышение, то солнечные аморфные батареи работают намного более эффективно. В яркий солнечный день аморфные батареи производят электрической энергии намного больше, чем кристаллические. При повышении температуры кристаллические батареи становятся значительно менее эффективными. Не секрет и тонкопленочные батареи теряют свою эффективность при нагреве, однако потери здесь существенно ниже. Например, при нагреве эффективность кристаллической батареи снижается на пятую часть.
  1. Безусловный плюс аморфных батарей — это возможность вырабатывать электроэнергию даже при рассеянном освещении. Аморфные батареи продолжают функционировать даже тогда, когда кристаллические батареи просто становятся неэффективными. Даже при слабом освещении аморфные кремниевые элементы могут генерировать электроэнергию.
  2. Стоимость выработанной электроэнергии у аморфного кремния ниже.

Аморфные солнечные батареи сегодня развиваются максимально возможными темпами, инвесторы охотно вкладывают в эту энергетическую сферу все больше средств. Объемы производства значительно увеличиваются, а значит уменьшается стоимость конечной продукции. Также растет качество товара и его энергоэффективность.

В процессе производства аморфных панелей не является достаточно сложным технологическим процессом, вот почему отходов в процессе производства меньше. Кристаллические батареи между собой спаиваются, тогда как тонкопленочные модули производятся как готовые конструкции, причем формат их может быть самым разным.

Даже при рассеянном свете, то есть в пасмурную погоду потери по мощности у аморфных батарей существенно меньше. Кремниевые батареи, находящиеся в тени или загрязненные, теряют до четверти мощности. В пасмурную погоду эффективность аморфных батарей намного выше.

В чем недостатки тонкопленочных аморфных солнечных батарей

КПД у аморфных батарей все же в два раза ниже. Это является основным минусом в сравнении с кристаллическими модулями. Однако плюсов у аморфных батарей несравненно больше и недостаток КПД перекрывается с лихвой.

Тонкостенные аморфные солнечные модули: конструктивные особенности

В качестве подложки используется либо различные гибкие материалы, либо стекло. Подложка должна пропускать солнечные лучи. Использование в качестве основы гибких материалов позволяет аморфные батареи размещать на одежде или сумках, в условиях жаркого климата, на фасадах зданий. Батарея достаточно эффективна в облачную погоду. Время эксплуатации аморфных батарей такое же как и кристаллических. Однако технология производства совершенствуется. В общем выбирать безусловно потребителю.

Источник

Достоинства, недостатки и перспектива аморфных солнечных батарей

Технологии, позволяющие изготавливать аморфные солнечные батареи, постоянно совершенствуются. Это может в ближайшем будущем рынок переориентировать в их направлении.

Описание

В данное время они представлены уже третьим поколением. Достоинством второго считают низкую стоимость при идентичной с модулями кристаллическими мощности. Поэтому именно они получили широкое распространение. Кремния для их получения необходимо меньше в 10 раз.

Модели, относящиеся к третьему поколению, характеризуется увеличенным периодом эксплуатации и КПД, доведенным до 12%.

Важно: фотоэлектрические модули тонкопленочные модули считаются главным кандидатом для массового производства, возможным уже в недалеком будущем, несмотря на недостатки и то, что сегодня лидерство удерживают кристаллические аналоги (80% рынка).

Поколения аморфных панелей

Очень скоро стремительное развитие пленочных аморфных модулей может изменить сложившуюся ситуацию на рынке.

Сегодня их представляют три поколения:

  • к первому принадлежат однопереходные, минусом которых был короткий срок эксплуатации: после 10 лет работы они приходили в негодность. Помимо этого их КПД был чрезвычайно низким – 5%;
  • они же, но с вдвое большим КПД (8%) и более продолжительным сроком действия;
  • устройства третьего поколения могут вполне конкурировать с аналогами, поскольку имеют достаточно высокий КПД – порядка 12%. Они прослужат намного дольше предшественников.

Кроме них имеются варианты комбинированные, которые образуют как элементы кристаллические, так и аморфные. Однако их стоимость высока, поэтому широкого применения они не получили.

Второе поколение панелей аморфных

Как говорилось уже, они сегодня наиболее распространены. Объясняется это их невысокой стоимостью, объясняемой небольшим количеством используемого кремния, в сравнении с поли- и монокристаллическими батареями, и неплохими параметрами мощности.

Преимущества

Перед аналогами кристаллическими у тонкопленочных аморфных панелей немало преимуществ:

  • лучшая производительность при высоких температурах эксплуатации. Благодаря меньшей зависимости от нагрева, они более эффективны, чем кристаллические в теплое время. Понятно, что мощность при нагреве они теряют, но не столь сильно, как привычные солнечные панели, у которых она может сокращаться на 20%.

Способны они вырабатывать электроэнергию при недостаточной освещенности, поэтому более эффективны, в сравнении с кристаллическими аналогами, в дождливую погоду, в сумерки и снегопады.

Аморфные системы продолжают вырабатывать электричество в то время, когда ее генерировать прекращают классические кристаллические конструкции. Они вырабатываю его больше на 20%, чем аналоги.

  • допускают скрытую установку;
  • стоят меньше, поскольку невысоки затраты на производство. Выгодная стоимость каждого Ватта также объясняется вливанием значительных инвестиций, что позволяет наращивать их выпуск и снижать цену;
  • высокая гибкость и малая толщина делают проще монтаж, ремонт и обслуживание;
  • менее зависимы от затенения и попадание грязи на лицевую поверхность, в то время как производительность кремниевых от этого снижается на 25%;
  • Минимум дефектов. Процесс создания рассматриваемых модулей очень простой. Благодаря отсутствию необходимости в пайке для соединения модулей между собой (они формируются сразу в единую конструкцию), в готовых изделиях меньше дефектов.

Недостатки, как видно, с лихвой перекрываются достоинствами панелей.

Недостатки модулей аморфных

Главной негативной особенностью аморфных кремниевых солнечных батарей считают невысокий КПД, который вдвое меньше, чем у аналогов кремниевых (в условиях близких к идеальным).

Кроме того, у них есть и другие минусы:

  • значительно большие, чем у аналогов, размеры;
  • защищенные с двух сторон стеклом, они приобретают значительную итоговую массу. Недостаток, к слову, постепенно нивелируется благодаря развитию технологий.

У кремниевых панелей недостатков не меньше.

Недостатки кремниевых устройств

Материал этот очень дорого стоит, поскольку для нужной степени очистки ему необходимо пройти несколько стадий очистки. При его резке большое количество превращается в отходы – стружку.

К тому же, энергия не вся превращается в электрическую под воздействием света: она частично обратно отражается от поверхности, другая ее часть, не поглощаясь и не преобразуясь, проходит «наружу».

Рекомендуем:

  • Работа солнечных батарей ночью и в пасмурную погоду
  • Монокристаллические солнечные панели: сравнение с аналогами, достоинства, цена — ТОП-6
  • Тонкопленочные солнечные батареи: достоинства и недостатки, цена, характеристики

Кроме этого, она способна приводить к тепловым колебаниям в кристаллической решетке и тратиться на процесс рекомбинации, т.е. уничтожения электронов с «дырками», что сопровождается выделением тепла.

Все это негативно отражается на КПД ФЭП, снижает его до 15% (в редких случаях до 22%).

Область использования

Рекомендуется использовать эту разновидность солнечных модулей при:

  • высокой облачности;
  • жаркой погоде, когда разогреваются модули до 60 градусов;
  • отсутствие ограничений по площади конструкции и ее весу;
  • при необходимости интегрирования непосредственно в постройку.

Кроме этого, аморфные солнечные батареи можно устанавливать в проемы оконные (вместо стекол) и монтировать на фасады зданий, что открывает неограниченные возможности для дизайнеров. Но, элементы должны отличаться определенной степенью прозрачности (для стекол он составляет 5-20%, без потери процентной выработки электричества).

Дополнительное использование

Отличная гибкость открывает возможности использования их в легкой промышленности. Их применяют в качестве вспомогательного материала при эксклюзивном пошиве сумочек и предметов одежды.

Деградация

Она соответствует уровню этого показателя у панелей кристаллических, и снижается менее чем на 10% на протяжении 10 лет эксплуатации, на 20% — после 25 летней «службы».

Особенности конструкции

Для подложки этой разновидности солнечных панелей применяют:

  • стекло особой очистки;
  • специальных марок керамика;
  • кристаллы сапфиров искусственных и иные гибкие материалы, способные пропускать лучи солнца.

Изготовление

Для изготовления полупроводникового преобразователя подходит только тщательно очищенный кремний. Форма его имеет, как правило, вид цилиндра с диаметром всего в десятки миллиметров.

Его режут на тончайшие диски, составляющие микроны по толщине, которые затем легируют, нанося на поверхность примеси металлические и иные.

В кремниевой пластине образуются области, насыщенные по-разному «дырками» и электронами. Другими словами, имеющие «дырочную» p-проводимость и n-проводимость электронную.

Под «дырками» понимают металл, из которого примесями частично удалены электроны, т.е. это «положительная» зона, или p-проводимость.

Комбинируя составом, очередность нанесенных слоев и их толщиной, получают гетеро — или p-n-переходы, т.е. у пластин появляется способность выдавать электричество при облучении светом.

По этому принципу созданы были первые ФЭТ – преобразователи фотоэлектрические, КПД которых достигали почти 30% при нормальных условиях и порядка 22% — при высокой температуре.

Изготовление ФЭП аморфных

Сырьем для главного слоя служит силан-крмнийводород (SiH4). После обработки кремния водородом, получают гидрогенизированный кремний.

В закрытой камере на силан воздействуют, перед нанесением на аморфный кремний, тлеющим электрическим разрядом. Испаряясь, кремневые пары осаждаются на подложку. Слой получается микронной толщины.

Поскольку производство безотходное, стоимость готовой продукции низкая. Модули изготавливать можно площадью в несколько метров квадратных.

Гидрогенизаций добиваются полупроводниковых свойств у тончайших пленок.

Купить

Недорого аморфные солнечные батареи купить можно в интернет-магазинах:

Видео: О технологии получения аморфного кремния

Автор и редактор обзоров по гаджетам и новой техники. Ведет работы по написанию свежих рейтингов к публикациям, проверки достоверности и актуальности информации уже опубликованных статей. Отвечает на вопросы в комментариях, пишет на авто темы.

Источник

Оцените статью