- Аморфные солнечные батареи
- Аморфные солнечные модули второго поколения
- Основные преимущества кристаллических аморфных батарей
- В чем недостатки тонкопленочных аморфных солнечных батарей
- Тонкостенные аморфные солнечные модули: конструктивные особенности
- Солнечные батареи из аморфного кремния: плюсы и минусы
- Панели из кристаллического и аморфного кремния – главные отличия
- Области применения
- Аморфные солнечные батареи: изготовление, преимущества, область применения
- Технологии производства солнечных панелей из аморфного кремния
- Этапы совершенствования аморфных солнечных батарей из кремния
- Плюсы и минусы аморфных солнечных панелей
- Рекомендации по применению солнечных батарей из аморфного кремния
Аморфные солнечные батареи
В сфере солнечных батарей аморфные солнечные батареи выходят в лидеры. Во всяком случае им прогнозируют такое светлое будущее. Тонкоплёночные фотоэлектрические солнечные модули по сравнению с кристаллическими имеют неоспоримые преимущества. Безусловно сегодня порядка 80% батарей выпускается в кристаллах, однако совсем скоро показатель будет меняться.
В настоящее время развитие пленочных аморфных солнечных батарей происходит ударными темпами, в этой области постоянно делаются все новые шаги для их массового внедрения. Широкое коммерческое будущее получили именно модули из аморфного кремния. В настоящий момент уже существует три поколения солнечных аморфных кремниевых батарей:
1. Однопереходные солнечные элементы. Они относятся к первому поколению аморфных кремниевых батарей. КПД таких батарей было крайне небольшое, порядка 5%, также такие батареи могли работать не более 10-ти лет, затем они просто приходили в негодность.
- Второе поколение было представлено теми же однопереходными батареями, однако более совершенными. В частности КПД был увеличен практически вдвое, да и срок эксплуатации их тоже увеличился.
- Батареи третьего поколения имеют уже серьезный КПД и могут уже конкурировать с кристаллическими. КПД уже составляет 12%. Срок эксплуатации также значительно увеличился и составляет более 15-ти лет.
Производятся и комбинированные солнечные модули, в которых имеются как аморфные элементы, так и кристаллические. Однако стоимость комбинированных батарей значительная, поэтому их использование носит ограниченный характер.
Аморфные солнечные модули второго поколения
Именно тонкопленочные аморфные однопереходные батареи на сегодняшний момент считаются наиболее перспективными в плане внедрения. Преимущества таких батарей очевидны. Прежде всего себестоимость составляющих элементов достаточно приемлемая. Аморфные батареи имеют лучшие по отношению с кристаллическими показатели мощности. Аморфные батареи имеют меньшую стоимость еще и потому, что для их производства требуется значительно меньше кремния, чем для изготовления кристаллических батарей.
Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.
Основные преимущества кристаллических аморфных батарей
Безусловно первым и основным преимуществом тонкопленочных аморфных модулей является их стоимость. Она намного ниже, чем у кристаллических батарей при том КПД, однако существуют и другие преимущества, которые являются решающими при выборе для потребителя. К основным преимуществам можно отнести:
- Если температура меняется на повышение, то солнечные аморфные батареи работают намного более эффективно. В яркий солнечный день аморфные батареи производят электрической энергии намного больше, чем кристаллические. При повышении температуры кристаллические батареи становятся значительно менее эффективными. Не секрет и тонкопленочные батареи теряют свою эффективность при нагреве, однако потери здесь существенно ниже. Например, при нагреве эффективность кристаллической батареи снижается на пятую часть.
- Безусловный плюс аморфных батарей — это возможность вырабатывать электроэнергию даже при рассеянном освещении. Аморфные батареи продолжают функционировать даже тогда, когда кристаллические батареи просто становятся неэффективными. Даже при слабом освещении аморфные кремниевые элементы могут генерировать электроэнергию.
- Стоимость выработанной электроэнергии у аморфного кремния ниже.
Аморфные солнечные батареи сегодня развиваются максимально возможными темпами, инвесторы охотно вкладывают в эту энергетическую сферу все больше средств. Объемы производства значительно увеличиваются, а значит уменьшается стоимость конечной продукции. Также растет качество товара и его энергоэффективность.
В процессе производства аморфных панелей не является достаточно сложным технологическим процессом, вот почему отходов в процессе производства меньше. Кристаллические батареи между собой спаиваются, тогда как тонкопленочные модули производятся как готовые конструкции, причем формат их может быть самым разным.
Даже при рассеянном свете, то есть в пасмурную погоду потери по мощности у аморфных батарей существенно меньше. Кремниевые батареи, находящиеся в тени или загрязненные, теряют до четверти мощности. В пасмурную погоду эффективность аморфных батарей намного выше.
В чем недостатки тонкопленочных аморфных солнечных батарей
КПД у аморфных батарей все же в два раза ниже. Это является основным минусом в сравнении с кристаллическими модулями. Однако плюсов у аморфных батарей несравненно больше и недостаток КПД перекрывается с лихвой.
Тонкостенные аморфные солнечные модули: конструктивные особенности
В качестве подложки используется либо различные гибкие материалы, либо стекло. Подложка должна пропускать солнечные лучи. Использование в качестве основы гибких материалов позволяет аморфные батареи размещать на одежде или сумках, в условиях жаркого климата, на фасадах зданий. Батарея достаточно эффективна в облачную погоду. Время эксплуатации аморфных батарей такое же как и кристаллических. Однако технология производства совершенствуется. В общем выбирать безусловно потребителю.
Источник
Солнечные батареи из аморфного кремния: плюсы и минусы
Помимо классических монокристаллических и поликристаллических панелей, несколько лет назад большой популярностью начали пользоваться солнечные батареи из аморфного кремния. Долгое время они практически не применялись, причиной чему был крайне низкий КПД. Однако с переходом на тонкопленочную технологию изготовления производительность A-Si значительно выросла. Сегодня их широкое использование базируется на удачном соединении низкой себестоимости.
Панели из кристаллического и аморфного кремния – главные отличия
Несмотря на использовании во всех трех типах батарей одинакового полупроводникового материала – кремния – Moni-Si, Poli-Si и A-Si имеют одно важное конструктивное отличие. Заключается оно в форме поглощающей фотоны поверхности.
- Moni-Si. В монокристаллических ячейках игольчатые поверхности кристаллов расположены под одним углом. По этой причине при строго вертикальном падении лучей уровень генерации таких ячеек максимален, но при малейшем отклонении угла от 90° эффективность резко падает.
- Poli-Si. Из-за иной технологии выращивания кристаллов их поглощающие грани размещены разнонаправлено. Это несколько снижает коэффициент поглощения солнечной энергии при прямом падении лучей, но повышает при угловом.
- A-Si. Солнечные батареи из аморфного кремния обладают «рыхлой» поверхностью, под электронным микроскопом напоминающей пену. Главное ее преимущество – практически неизменный показатель поглощения, независимо от углов наклона к солнцу и азимута на него. В ясную погоду это качество является негативным. Но в регионах с преобладанием пасмурных дней среднегодовая производительность A-Si имеет хорошие показатели. Несмотря на достаточно низкий (в сравнении с поли- и монокристаллом) номинальный КПД.
Более эффективен последний тип батарей и в условиях постоянной загазованности окружающей среды, а также в местностях с частыми пылевыми бурями.
Краткая история совершенствования панелей из аморфного кремния
В качестве полупроводника этот материал впервые привлек внимание ученых только в 1980-х. Такое внимание он заслужил рядом уникальных свойств, главными из которых была простота производства и возможность создавать токопроводящие поверхности любого размера.
Поначалу аморфный кремний использовался исключительно в электронном оборудовании, и только к концу 20 века были изготовлены первые фотоэлектрические элементы на его основе. За последующие 20 лет было создано три поколения солнечных батарей A-Si, каждое из которых существенно превосходило предыдущее.
- Первое поколение – однопереходные ячейки. Плюс – дешевое производство. Минус – срок службы около 10 лет и КПД менее 5%.
- Второе поколение – усовершенствованная модификация ранних моделей. Плюс – увеличение срока службы до 20 лет. Минус – все еще низкая эффективность порядка 8%.
- Третье поколение – принципиально новая технология. Аморфный кремний стал наноситься на подложки путем испарения с последующей конденсацией. Плюс – новые панели стали гибкими и долговечными. Минус – КПД пока так и не достиг уровня кристаллической фотовольтаики, хотя и поднялся до 14-16%.
Тем не менее, даже при такой эффективности батареи A-Si начали конкурировать с монокристаллическими и поликристаллическими аналогами. Характерен один из экспериментов, проведенный Институтом Высоких Температур (ИВТАН) в Москве. На одном из зданий было установлено два типа панелей – монокристаллических и аморфных. В условиях мегаполиса, расположенного в умеренно высоких широтах, оба типа батарей сгенерировали за год:
- A-Si – 726 кВт*ч / 1кВт;
- Moni-Si – 689 кВт*ч / 1кВт.
При этом номинальный КПД первых составлял всего 14,8%, а вторых – 22,9%.
Отдельно стоит выделить гибридную технологию гетероструктурных батарей, когда солнечные элементы формируются и на основе аморфного кремния, и кристаллического кремния. Такой подход позволяет повысить генерацию при экстремально высоких и низких температурах, а также в условиях низкой освещенности (в сравнении с моно/поли), а в обычных условиях — генерировать больше, чем чистый аморфный кремний. Такую технологию производства солнечных батарей использует, в том числе, и отечественная компания Хевел.
Достоинства и недостатки аморфного кремния – краткие итоги
Среди основных преимуществ таких солнечных батарей можно выделить следующие:
- Минимальный температурный коэффициент. Высокие температуры практически не оказывают влияния на эффективность панелей A-Si. Если у монокристаллов нагревание рабочей поверхности выше 25°C приводит к падению КПД на 0,5% каждый градус, то у тонких аморфных пленок этого не наблюдается.
- Высокий уровень генерации при слабом освещении. В условиях облачности, рассеивания света пылью или газами и при низко стоящем солнце A-Si на 15-20% производительнее, чем, соответственно, Poli-Si и Moni-Si. Они продолжают генерировать энергию даже при сильном дожде, когда выработка моно- и поликристаллов падает практически до нуля.
- Незаметность. Особенности строения, малая толщина и отсутствие кристаллической решетки делают солнечные панели из аморфного кремния похожими на полупрозрачную полимерную пленку. Похожими свойствами обладают и перспективные модели других типов тонкопленочных батарей, но последние гораздо менее эффективны.
- Отсутствие брака. Процедура изготовления A-Si не требует использования пайки – наиболее «слабого места» традиционных типов фотовольтаики. Несмотря на дешевизну, высокую скорость и простоту производства, бракованные аморфные пленки практически не встречаются.
- Слабая реакция на частичное затенение. Еще одна огромная проблема традиционных СЭС, никак не затрагивающая аморфный кремний. Падение тени на любую часть панели A-Si незначительно влияет на ее работоспособность.
Единственным недостатком этой разновидности батарей является пока еще недостаточная удельная мощность. Но вероятность ее выхода на КПД солнечной батареи около 20% уже в следующем поколении очень высока.
Области применения
Сферы использования панелей из аморфного кремния диктуется их главными достоинствами. Наиболее часто пленки A-Si рекомендуются к применению в следующих случаях:
- значительной загазованности и/или запыленности воздуха;
- преобладания неблагоприятных погодных условий, прежде всего частой облачности и осадков;
- высоких среднегодовых температур окружающей среды;
- сложности или инженерная нецелесообразность установки панелей в оптимальное положение относительно солнца;
- при стремлении использовать полупроводниковые элементы в качестве полупрозрачных стекол или пленки – довольно частое дизайнерское решение в современном мире.
Как основной источник энергии батареи из аморфного кремния пока малоэффективны. Однако в качестве альтернативного ее поставщика – особенно в паре с аккумуляторами – их применение встречается все чаще.
Источник
Аморфные солнечные батареи: изготовление, преимущества, область применения
Дата публикации: 3 мая 2019
Создание первых образцов аморфных пленочных батарей стало новым открытием в сфере альтернативных источников электрической энергии. За несколько лет модель удалось усовершенствовать, добившись от простой конструкции выдающихся технико-эксплуатационных характеристик. Эксперты, занимающиеся исследованиями в области энергетики, утверждают: очень скоро аморфные солнечные панели займут лидирующее положение в своем сегменте и будут запущены в массовое производство.
Технологии производства солнечных панелей из аморфного кремния
Изготовление моделей солнечных панелей осуществляется с использованием тщательно очищенного кремния цилиндрической формы диаметром несколько десятков миллиметров. Заготовку режут на диски толщиной в несколько микрон, после чего подвергают легированию. В обработанной пластине образуются области с разной электрической проводимостью, в зависимости от количества электронов, – р-проводимостью и n-проводимостью. Соединение нескольких дисков в различных вариантах позволяет получить пластину, вырабатывающую электрическую энергию под воздействием света. В качестве основы для пластины кремния могут выступать:
- специальные виды керамики;
- стекло особой очистки;
- кристаллы сапфиров и другие материалы, обладающие светопропускной способностью.
Благодаря безотходному характеру производства, готовые панели имеют относительно невысокую стоимость, что немало способствует их популярности.
Этапы совершенствования аморфных солнечных батарей из кремния
Быстрое развитие и постоянное усовершенствование технологии производства панелей позволило предложить на выбор сразу несколько поколений устройств:
- первое поколение – так называемые однопереходные конструкции с относительно низким КПД до 5% и непродолжительным сроком службы;
- второе поколение – доработанные модели с КПД до 8% и увеличенным сроком эксплуатации, идеальное сочетание качества и стоимости;
- третье поколение – эффективные батареи с КПД до 12%, которые планируется запустить в массовое производство.
Не уступая своим прямым конкурентам – кристаллическим батареям – по уровню мощности, аморфные солнечные батареи значительно опережают их по доступности цене.
Плюсы и минусы аморфных солнечных панелей
В числе основных достоинств конструкций из кремния стоит отметить:
- незначительную потерю мощности в условиях стабильного повышения температуры. В отличие от кристаллических моделей, теряющих до 20% первоначальной мощности, аморфные солнечные батареи сохраняют эффективность на всем протяжении солнечного сезона года;
- возможность эксплуатации в условиях рассеянного освещения, благодаря которому объем вырабатываемой электроэнергии увеличивается на 20%. В свою очередь кристаллические панели в условиях рассеянного освещения практически бесполезны;
- вопрос стоимости. Цена ватта мощности кремниевых батарей ниже, чем этот же показатель у кристаллических моделей. Удешевлению альтернативной энергии дополнительно способствует усовершенствование производственного процесса и применение инновационных технологических решений;
- незначительный процент дефектов в готовом изделии за счет простой конструкции без сложных соединений элементов;
- незначительную потерю мощности в условиях пасмурной погоды, когда кристаллические модели теряют до 25% в условиях недостаточного освещения или загрязнения поверхности.
Единственное, в чем проигрывают аморфные солнечные панели, – это пониженный КПД, в 2 раза отличающийся от уровня КПД кристаллических батарей. Однако этот недостаток полностью компенсируется перечисленными преимуществами.
Рекомендации по применению солнечных батарей из аморфного кремния
Благодаря преимуществам устройства можно без ограничений эксплуатировать:
- при повышенной облачности;
- жаркой погоде с повышением температуры воздуха до 55°С и выше;
- минимальных ограничениях по весу и размеру источника энергии;
- необходимости встроить батарею в стену или оконные проемы, установить непосредственно на фасад здания.
Использование в качестве основы под кремниевые пластины гибких материалов с хорошей светопропускной способностью позволяет использовать батареи в пошиве дизайнерских моделей одежды и аксессуаров. Кроме того, им находят полезное применение в бытовых условиях, для которых актуально получение недорогой электроэнергии. Возможно, дальнейшее совершенствование производства дополнительно расширит сферу применения кремниевых батарей и дополнительно снизит их себестоимость.
Отопление дома – просим помощи у Солнца
Студенческая разработка повышает эффективность солнечных батарей на 20%
Возможности солнечной энергии
Какой контроллер выбрать для солнечных батарей
Вам нужно войти, чтобы оставить комментарий.
Источник