- Аморфные солнечные батареи
- Аморфные солнечные модули второго поколения
- Основные преимущества кристаллических аморфных батарей
- В чем недостатки тонкопленочных аморфных солнечных батарей
- Тонкостенные аморфные солнечные модули: конструктивные особенности
- Аморфные солнечные батареи
- Аморфные солнечные батареи: изготовление, преимущества, область применения
- Технологии производства солнечных панелей из аморфного кремния
- Этапы совершенствования аморфных солнечных батарей из кремния
- Плюсы и минусы аморфных солнечных панелей
- Рекомендации по применению солнечных батарей из аморфного кремния
Аморфные солнечные батареи
В сфере солнечных батарей аморфные солнечные батареи выходят в лидеры. Во всяком случае им прогнозируют такое светлое будущее. Тонкоплёночные фотоэлектрические солнечные модули по сравнению с кристаллическими имеют неоспоримые преимущества. Безусловно сегодня порядка 80% батарей выпускается в кристаллах, однако совсем скоро показатель будет меняться.
В настоящее время развитие пленочных аморфных солнечных батарей происходит ударными темпами, в этой области постоянно делаются все новые шаги для их массового внедрения. Широкое коммерческое будущее получили именно модули из аморфного кремния. В настоящий момент уже существует три поколения солнечных аморфных кремниевых батарей:
1. Однопереходные солнечные элементы. Они относятся к первому поколению аморфных кремниевых батарей. КПД таких батарей было крайне небольшое, порядка 5%, также такие батареи могли работать не более 10-ти лет, затем они просто приходили в негодность.
- Второе поколение было представлено теми же однопереходными батареями, однако более совершенными. В частности КПД был увеличен практически вдвое, да и срок эксплуатации их тоже увеличился.
- Батареи третьего поколения имеют уже серьезный КПД и могут уже конкурировать с кристаллическими. КПД уже составляет 12%. Срок эксплуатации также значительно увеличился и составляет более 15-ти лет.
Производятся и комбинированные солнечные модули, в которых имеются как аморфные элементы, так и кристаллические. Однако стоимость комбинированных батарей значительная, поэтому их использование носит ограниченный характер.
Аморфные солнечные модули второго поколения
Именно тонкопленочные аморфные однопереходные батареи на сегодняшний момент считаются наиболее перспективными в плане внедрения. Преимущества таких батарей очевидны. Прежде всего себестоимость составляющих элементов достаточно приемлемая. Аморфные батареи имеют лучшие по отношению с кристаллическими показатели мощности. Аморфные батареи имеют меньшую стоимость еще и потому, что для их производства требуется значительно меньше кремния, чем для изготовления кристаллических батарей.
Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.
Основные преимущества кристаллических аморфных батарей
Безусловно первым и основным преимуществом тонкопленочных аморфных модулей является их стоимость. Она намного ниже, чем у кристаллических батарей при том КПД, однако существуют и другие преимущества, которые являются решающими при выборе для потребителя. К основным преимуществам можно отнести:
- Если температура меняется на повышение, то солнечные аморфные батареи работают намного более эффективно. В яркий солнечный день аморфные батареи производят электрической энергии намного больше, чем кристаллические. При повышении температуры кристаллические батареи становятся значительно менее эффективными. Не секрет и тонкопленочные батареи теряют свою эффективность при нагреве, однако потери здесь существенно ниже. Например, при нагреве эффективность кристаллической батареи снижается на пятую часть.
- Безусловный плюс аморфных батарей — это возможность вырабатывать электроэнергию даже при рассеянном освещении. Аморфные батареи продолжают функционировать даже тогда, когда кристаллические батареи просто становятся неэффективными. Даже при слабом освещении аморфные кремниевые элементы могут генерировать электроэнергию.
- Стоимость выработанной электроэнергии у аморфного кремния ниже.
Аморфные солнечные батареи сегодня развиваются максимально возможными темпами, инвесторы охотно вкладывают в эту энергетическую сферу все больше средств. Объемы производства значительно увеличиваются, а значит уменьшается стоимость конечной продукции. Также растет качество товара и его энергоэффективность.
В процессе производства аморфных панелей не является достаточно сложным технологическим процессом, вот почему отходов в процессе производства меньше. Кристаллические батареи между собой спаиваются, тогда как тонкопленочные модули производятся как готовые конструкции, причем формат их может быть самым разным.
Даже при рассеянном свете, то есть в пасмурную погоду потери по мощности у аморфных батарей существенно меньше. Кремниевые батареи, находящиеся в тени или загрязненные, теряют до четверти мощности. В пасмурную погоду эффективность аморфных батарей намного выше.
В чем недостатки тонкопленочных аморфных солнечных батарей
КПД у аморфных батарей все же в два раза ниже. Это является основным минусом в сравнении с кристаллическими модулями. Однако плюсов у аморфных батарей несравненно больше и недостаток КПД перекрывается с лихвой.
Тонкостенные аморфные солнечные модули: конструктивные особенности
В качестве подложки используется либо различные гибкие материалы, либо стекло. Подложка должна пропускать солнечные лучи. Использование в качестве основы гибких материалов позволяет аморфные батареи размещать на одежде или сумках, в условиях жаркого климата, на фасадах зданий. Батарея достаточно эффективна в облачную погоду. Время эксплуатации аморфных батарей такое же как и кристаллических. Однако технология производства совершенствуется. В общем выбирать безусловно потребителю.
Источник
Аморфные солнечные батареи
Внешне панель из аморфного кремния выглядит блекло-сероватой.
Производство элементов из аморфного кремния является безотходным, что существенно уменьшает их стоимость. Несмотря на низкий КПД, элементы из аморфного кремния способны более эффективно использовать рассеянный солнечный свет, а при нагреве элементов выход электроэнергии больше, чем у кристаллических в аналогичных условиях.
Исходным материалом для производства кремниевых аморфных фотоэлементов является силан (SiH4), так называемый кремневодород, который наносится на материал подложки. Слой нанесенного кремния в 100 раз тоньше кристаллического кремниевого фотоэлемента.
В сравнении с кристаллическими кремниевыми элементами аморфные обладают рядом преимуществ, одним из которых является возможность и сравнительная простота создания элементов большой площади (более 1 м) при более низких температурах осаждения, а также наличие специфических полупроводниковых свойств, которыми можно управлять для получения требуемых характеристик, подбирая оптимальные комбинации компонентов пленки.
Аморфный кремний является гидрогенизированной формой кремния (a-Si:H), поскольку в его составе содержится водород в количестве от 5 до 20 ат. %, который изменяет электрофизические свойства аморфного кремния и придает пленке полупроводниковые свойства.
Элементы на основе пленки а-Si:H толщиной менее 1 мкм, полученной в результате разложения силана в тлеющем разряде, могут быть созданы на подложках не только из металла, но и из самых различных материалов: стекла, полимеров , керамики и т. д., поскольку температура осаждения кремния 250-400 градусов С. Однако, наиболее распространенной по-прежнему остается подложка из нержавеющей стали. Основными направлениями разработок в области аморфных гидрогенизированных элементов (a-Si:H) является повышение КПД и стабильности параметров элементов. Наиболее высокая эффективность (13%) в настоящее время получена на элементе с тройным переходом p-i-n.
Оптическое поглощение аморфного кремния в 20 раз превышает аналогичный показатель у кристаллического кремния, что позволяет использовать пленки аморфного кремния толщиной всего 0,5-1,0 мкм, вместо более дорогих пластин из кристаллического кремния толщиной 300 мкм.
Солнечные элементы из аморфного кремния
Технология, при которой тонкая пленка кремния осаждается на подложку и защищается покрытием, получила название «техники испарительной фазы». Эта технология отличается низкой энерго- и трудоемкостью, а, следовательно, и соответствующей ценой.
Для получения гибких фотоэлементов, используются гибкие подложки, такие как металлические или полимерные ленты.В этом случае осаждение происходит непрерывно при протягивании подложки через реактор. Поскольку данная технология высокоэффективна, то и пленки аморфного кремния, полученные этим способом, имеют более низкую стоимость.
Тонкопленочные элементы, к которым относятся элементы из аморфного кремния, способны вырабатывать электричество при рассеянном излучении, что делает их востребованными в регионах, где пасмурная погода не является редкостью, а также в местах расположения промышленных предприятий, загрязняющих воздух. Несмотря на более низкую себестоимость тонкопленочных панелей, им требуется площадь в 2-2,5 раза большая, чем для моно- или мультикристаллических панелей, из-за низкого КПД.
Чаще всего тонкопленочные панели применяют для систем, вырабатывающих энергию прямо в сеть, т. к. наибольшая эффективность у тонкопленочных панелей при их использовании в мощных системах (выше 10 кВт). Для выработки электроэнергии маломощными автономными или резервными системами энергоснабжения более применимы моно- или мультикристаллические панели.
Источник
Аморфные солнечные батареи: изготовление, преимущества, область применения
Дата публикации: 3 мая 2019
Создание первых образцов аморфных пленочных батарей стало новым открытием в сфере альтернативных источников электрической энергии. За несколько лет модель удалось усовершенствовать, добившись от простой конструкции выдающихся технико-эксплуатационных характеристик. Эксперты, занимающиеся исследованиями в области энергетики, утверждают: очень скоро аморфные солнечные панели займут лидирующее положение в своем сегменте и будут запущены в массовое производство.
Технологии производства солнечных панелей из аморфного кремния
Изготовление моделей солнечных панелей осуществляется с использованием тщательно очищенного кремния цилиндрической формы диаметром несколько десятков миллиметров. Заготовку режут на диски толщиной в несколько микрон, после чего подвергают легированию. В обработанной пластине образуются области с разной электрической проводимостью, в зависимости от количества электронов, – р-проводимостью и n-проводимостью. Соединение нескольких дисков в различных вариантах позволяет получить пластину, вырабатывающую электрическую энергию под воздействием света. В качестве основы для пластины кремния могут выступать:
- специальные виды керамики;
- стекло особой очистки;
- кристаллы сапфиров и другие материалы, обладающие светопропускной способностью.
Благодаря безотходному характеру производства, готовые панели имеют относительно невысокую стоимость, что немало способствует их популярности.
Этапы совершенствования аморфных солнечных батарей из кремния
Быстрое развитие и постоянное усовершенствование технологии производства панелей позволило предложить на выбор сразу несколько поколений устройств:
- первое поколение – так называемые однопереходные конструкции с относительно низким КПД до 5% и непродолжительным сроком службы;
- второе поколение – доработанные модели с КПД до 8% и увеличенным сроком эксплуатации, идеальное сочетание качества и стоимости;
- третье поколение – эффективные батареи с КПД до 12%, которые планируется запустить в массовое производство.
Не уступая своим прямым конкурентам – кристаллическим батареям – по уровню мощности, аморфные солнечные батареи значительно опережают их по доступности цене.
Плюсы и минусы аморфных солнечных панелей
В числе основных достоинств конструкций из кремния стоит отметить:
- незначительную потерю мощности в условиях стабильного повышения температуры. В отличие от кристаллических моделей, теряющих до 20% первоначальной мощности, аморфные солнечные батареи сохраняют эффективность на всем протяжении солнечного сезона года;
- возможность эксплуатации в условиях рассеянного освещения, благодаря которому объем вырабатываемой электроэнергии увеличивается на 20%. В свою очередь кристаллические панели в условиях рассеянного освещения практически бесполезны;
- вопрос стоимости. Цена ватта мощности кремниевых батарей ниже, чем этот же показатель у кристаллических моделей. Удешевлению альтернативной энергии дополнительно способствует усовершенствование производственного процесса и применение инновационных технологических решений;
- незначительный процент дефектов в готовом изделии за счет простой конструкции без сложных соединений элементов;
- незначительную потерю мощности в условиях пасмурной погоды, когда кристаллические модели теряют до 25% в условиях недостаточного освещения или загрязнения поверхности.
Единственное, в чем проигрывают аморфные солнечные панели, – это пониженный КПД, в 2 раза отличающийся от уровня КПД кристаллических батарей. Однако этот недостаток полностью компенсируется перечисленными преимуществами.
Рекомендации по применению солнечных батарей из аморфного кремния
Благодаря преимуществам устройства можно без ограничений эксплуатировать:
- при повышенной облачности;
- жаркой погоде с повышением температуры воздуха до 55°С и выше;
- минимальных ограничениях по весу и размеру источника энергии;
- необходимости встроить батарею в стену или оконные проемы, установить непосредственно на фасад здания.
Использование в качестве основы под кремниевые пластины гибких материалов с хорошей светопропускной способностью позволяет использовать батареи в пошиве дизайнерских моделей одежды и аксессуаров. Кроме того, им находят полезное применение в бытовых условиях, для которых актуально получение недорогой электроэнергии. Возможно, дальнейшее совершенствование производства дополнительно расширит сферу применения кремниевых батарей и дополнительно снизит их себестоимость.
Отопление дома – просим помощи у Солнца
Студенческая разработка повышает эффективность солнечных батарей на 20%
Возможности солнечной энергии
Какой контроллер выбрать для солнечных батарей
Вам нужно войти, чтобы оставить комментарий.
Источник