Активной от солнечной панели

Солнечные панели для частного дома: поставь светло себе на службу

Использовать в частных домах и даже дачных домиках альтернативные источники энергии сегодня стало модной тенденцией. Впрочем, это достаточно практично и, как правило, выгодно. Первенство среди таких устройств получили солнечные панели для частного ома (солнечные батареи, солнечные электростанции). Связано это с ежегодным ростом (весьма солидным) производства, снижением цен, многочисленными наработками, упрощающими подбор оборудования и построение систем.

Что это?

Основу любой системы составляют солнечные панели. Они выполняют роль основного источника энергии и, зачастую, становятся наиболее дорогой составляющей.

От их взвешенного выбора зависит:

  • производительность домашней электростанции;
  • объемы и стоимость работ по монтажу и обслуживанию;
  • цена покупки;
  • характеристики остальных звеньев.

Критерии выбора

Единственным критерием при проектировании домашней электростанции и выборе оборудования для нее должна стать целесообразность.

Однако понятие это широкое, для его понимания потребуется учет многих факторов:

  • Средней и максимальной потребляемой мощности.
  • Производительности солнечных модулей.
  • Наличия стационарной электросети и режима совместной с ней работы.
  • Географического положения местности и климатических условий.
  • Финансовых возможностей владельца дома.
Читайте также:  Какие аккумуляторы подходят для солнечных панелей

Структура домашней солнечной электростанции

Определяется двумя основными положениями:

  1. Целью создания и использования.
  2. Работой совместно со стационарными электросетями.

Соответственно, рассматривать можно 3 варианта организации солнечного электроснабжения дома:

  1. Зависимый от электросети.
  2. Полуавтономный с резервированием.
  3. Полностью автономный.

Зависимый от сети вариант (электростанция, ведомая сетью)

Такая электростанция строится по простейшей схеме. В ее состав входят:

  • Солнечные панели в качестве альтернативного источника энергии.
  • Инвертор, преобразующий постоянное напряжение на выходе фотоэлементов в переменное напряжение для потребителей.

Гелиобатареи подключаются на вход инвертора. Его выход соединен с сетью (после счетчика). Основная особенность схемы – отсутствие промежуточных накопителей энергии (аккумуляторов) и устройства для их заряда.

При такой структуре приборы в доме потребляют электроэнергию от солнечных элементов через инвертор. Недостаток мощности восполняется сетью, и, наоборот, ее избыток (например, когда батареи работают в номинальном режиме, а потребители выключены), сбрасывается в сеть.

Достоинства такой схемы:

  • Минимальная стоимость по сравнению с другими вариантами.
  • Простота настройки и регулировки.

Есть у нее и серьезный недостаток – при отсутствии сетевого напряжения (во время отключения электроэнергии) система не работает.

Автономная схема

В этой системе отсутствует сеть, а электроснабжение дом полностью производится от солнечных батарей.

Такой функционал диктует схему построения:

  • Источник энергии – солнечные панели.
  • Накопитель (аккумулятор) – берет на себя питание потребителей, когда батареи не вырабатывают электроэнергию (например, в ночное время).
  • Контроллер заряда аккумуляторов – устройств, управляющее зарядом накопителей и потребление энергии от фотопанелей.
  • Инвертор, как и в предыдущем варианте, преобразующий постоянное напряжение в переменное.

Система работает следующим образом:

  • При наличии освещения солнечные батареи вырабатывают энергию.
  • Она поступает на вход контроллера, преобразующий ее параметры в нужные для заряда батарей. Аккумуляторы подключены к его выходу.
  • К выходу контроллера и зажимам АКБ подключаются входные цепи инвертора. Он преобразует напряжение и подает питание в сеть дома (не путать с централизованной).

Таким образом, при включенных электроприборах они получают энергию непосредственно с солнечных панелей (через контроллер и инвертор), когда светит Солнце. Одновременно, если есть избыток мощности, заряжаются аккумуляторы. Когда солнечный источник не работает, АКБ отдают накопленную энергию (через инвертор) потребителям.

Однако за красивой картинкой обязательно скрываются «подводные камни»:

  • Стоимость электростанции выходит весьма значительной.
  • Если по каким-либо причинам наблюдается длительный перерыв в работе панелей (поверхность покрыта снегом в зимнее время, дождевые тучи на неделю закрыли Солнце и т.д.), запасенной в аккумуляторах энергии не хватит для работы потребителей.

Решить проблему поможет резервный источник электроэнергии. В вариантах полностью автономных систем его роль может выполнять ветро- или гидро-, дизельный или бензиновый генератор. При наличии сетевого ввода резервным источником выступит стационарная электросеть, а система превратиться в полуавтономную.

Полуавтономная (гибридная) система

Схема такой электростанции практически полностью повторяет предыдущую за единственным исключением – для заряда накопителей используется энергия не только от солнечных панелей, но и от сети. В этом случае контроллер, кроме управления зарядными процессами, получает дополнительную функцию.

В настройках контроллера можно задать приоритет источников:

  • При выборе солнечных батарей работающие электроприборы будут, по возможности, запитаны от них, а от сети будут потребляться недостающая мощность и подзаряжаться аккумуляторы.
  • При выборе сети до пороговой мощности будет работать стационарный источник, а дополнительную энергию обеспечат гелиопанели.

Монокристаллические

Такие батареи визуально выглядят как панели с сегментами глубокого черного цвета. Получили название за счет конструкции на основе монокристаллов кремния.

Самый существенный недостаток — строгая ориентировка оптических осей кристаллов, что требует точного позиционирования панелей для получения максимальной отдачи. По этой же причине монокристаллы не терпят затенения – генерация энергии значительно снижается.

В настоящий момент обладают самым высоким КПД преобразования – около 22%. При этом стоимость тоже наиболее высокая – порядка 0.9-1.1 доллара за 1 Вт генерируемой мощности.

Поликристаллические модули

Название такие батареи получили за счет размещения на подложке множества кремниевых кристаллов с хаотически ориентированными оптическими осями. Визуально такие модули отличаются синим цветом с «морозным» рисунком.

Естественно, такое расположение кристаллов вызвало потерю КПД преобразования – он находится на уроне 11-16%. Однако это же позволило увеличить эффективность работы при рассеянном свете, что в результате привело к созданию панелей, которые успешно конкурируют с монокристаллическими (при прочих равных, например, размерах) по мощности генерации. Более того, по цене они значительно выигрывают и обходятся в 0.7-0.9 доллара за 1 Вт.

Аморфные

Технология изготовления рабочего тела сходна с поликристаллическими, но в качестве основы выступает аморфный кремний (aSi). При КПД в пределах 8-11% отличаются высокой эффективностью работы в рассеянном свете, могут захватывать и инфракрасный диапазон. В результате обладают лучшей стоимостью – порядка 0.5-0.7 доллара за 1 Вт.

Кроме того, имеют солидное преимущество – гибкую основу. Это означает, что для монтажа не требуется жестких конструкций, материал легко клеится на поверхности любой формы.

Остальные

Модули, предлагаемые производителями, могут быть изготовлены и по другим технологиям:

  • Микроморфные, отличаются высокой отдачей при рассеянном и инфракрасном излучении.
  • Гибридные, использует несколько полупроводниковых материалов и обеспечивают высокий КПД преобразования (до 44%).
  • Полимерные, гибкие с подложкой из полимерных материалов, абсолютные лидеры по стоимости.

Такие предложения следует тщательно изучать, некоторые из них могут оказаться намного выгоднее, чем лидирующие на рынке панели, выполненные по стандартным технологиям.

Вообще, монокристаллические панели можно рекомендовать для установки только жителям южных регионов. Остальным следует выбирать поликристаллы или панели по другим технологиям.

Мощность и количество

Определить, какое количество солнечных панелей необходимо, следует по средней и максимальной мощности потребления. Среднюю легко найти в счетах за электроэнергию – месячное потребление делится на количество дней в месяце. Максимальное находится суммированием мощностей всех имеющихся в доме электроприборов.

Кроме мощности потребителей необходимо учесть:

  • Время работы солнечных батарей. Как правило, принимается равным 6 часам, соответственно, мощность генерации нужно кратно увеличить.
  • Потери на преобразование при зарядке аккумуляторов и получении переменного напряжения на инверторе. С их учетом необходим запас по мощности не менее 30%.
  • Пиковые токи. Например, при средней мощности стиральной машины 500 Вт при работе нагревателя может потребляться до 2 кВт. При пуске насосов или других двигателей, пусковые токи могут превосходить номинальные значения в 5-6 раз. Конечно, львиную долю примут на себя аккумуляторы, но запас модулей по току в 20-30% не помешает.
  • Географию и погодные условия местности – коэффициент инсоляции. Найти его для зимнего и летнего времени можно в справочниках.

После расчета необходимой мощности генерации рассчитывается мощность, отдаваемая одной батареей:

Где:

  • Кс – стандартный сезонный коэффициент, 0.5 для лета и 0.7 для зимы.
  • Wn – мощность панели, заявленная производителем.
  • Ki – коэффициент инсоляции, также берется для лета и зимы.

Рассчитанную необходимую мощность генерации делят на оба (летнее и зимнее) значения. Наибольшее из двух чисел будет минимальным количеством панелей, которые потребуются для электроснабжения дома.

Источник

Все, что нужно знать о солнечных панелях

Вы хотите сэкономить на электричестве либо иметь дополнительный и независимый источник альтернативной энергии? А может, вы являетесь сторонником зеленой энергетики? Если так, то солнечные панели – тема для вас.

Энергия Солнца, или что такое солнечные панели

Солнце – главный источник энергии для всего живого и самой нашей планеты. Причем количества энергии, поступающей на Землю за каких-то 40 минут, хватает, чтобы удовлетворить энергетические потребности всех жителей земного шара в течение года. Учитывая возобновляемые и практически безграничные ресурсы небесного светила, перспективы его использования велики. Тем более что из всех альтернативных источников энергии именно солнечная признана самой безопасной и экологически чистой. Поэтому сегодня энергия солнца становится все более востребованной в самых разных сферах жизнедеятельности человека.

Воспользоваться этим даром природы людям помогают специальные устройства – солнечные панели (или солнечные батареи). Они преобразуют бесплатную энергию Солнца в электрическую и приобретают возрастающую популярность по всему миру.

Солнечные панели – из истории создания

Идея преобразования бесплатных солнечных лучей в энергию, которая будет работать на благо человека, будоражила людей давно. Так сложилось, что первым решением исторически стали солнечные термальные электростанции или солнечные коллекторы, которые принципиально отличатся от солнечных батарей (о принципе действия коллекторов коротко расскажем ниже). Солнечные же панели стали по факту второй и достаточно удачной попыткой человечества преобразовать энергию солнца в другой вид энергии, которая может использоваться для электроснабжения разного рода жилых, нежилых и хозяйственных обьектов.

И хотя солнечной энергетике не так много лет, ее развитию предшествовал целый ряд открытий и разработок. Но настоящий прорыв в направлении использования энергии света случился в середине 19 века, когда французский ученый Александр Эдмон Беккерель открыл явление фотоэлектрического эффекта. В 1873 году английский инженер-электрик Уиллоуби Смит обнаружил эффект фотопроводимости в селене, а несколькими годами спустя американец Чарльз Фриттс сконструировал первый фотоэлемент, состоящий из тонкого слоя селена, расположенного между пластинками золота и меди, и имевший эффективность всего 1%.

В 1987 году Генрих Герц открыл внешний фотоэффект, а в 1889 году русский Александр Столетов, в экспериментальной установке которого потек электрический ток, рожденный световыми лучами, описал закономерности фотоэффекта. Позднее к этому «приложил руку» и Альберт Эйнштейн. В начале 20 века он объяснил фотоэлектрический эффект на основе квантовой теории, за что впоследствии даже получил Нобелевскую премию. А первые прототипы солнечных панелей были созданы итальянским фотохимиком Джакомо Луиджи Чамичаном. В дальнейшем научные изыскания в области полупроводников привели к синтезированию кремниевых фотоэлементов с КПД 4%. Эта инновация была сделана в 1954 году в лаборатории компании «Bell Telephone». Позднее их эффективность увеличили до 15%, и солнечные батареи были впервые использованы в сельской местности и отдаленных городах как источник питания для системы телефонной связи, где они успешно использовались на протяжении многих лет. Еще через несколько лет в космос были запущены спутники с использованием солнечных батарей. Впоследствии были разработаны и созданы фотоэлементы на основе других полупроводников.

Чем отличаются солнечные панели от солнечных коллекторов

Как мы уже писали выше, солнечные коллекторы человечество придумало раньше, чем солнечные панели. Это совершенно разные устройства, хотя оба преобразуют энергию Солнца и в названии имеют слово «солнечный». На этом, пожалуй, их общность заканчивается. А теперь рассмотрим различия.

Если сказать коротко, то при использовании солнечных коллекторов потребитель «на выходе» получает тепловую энергию в виде нагретого теплоносителя, а солнечные панели предназначены только для генерации электрического тока.

Солнечные панели непосредственно преобразуют энергию солнца в электричество при помощи фотоэлементов (ФЭП – фотоэлектрических преобразователей или солнечных элементов).

Солнечный коллектор – это гелиоустановка, задача которой собирать и передавать тепловое излучение теплоносителю, который циркулирует через коллектор. В свою очередь, теплоноситель нагревает емкость, где находится вода для обеспечения горячего водоснабжения. То есть в отличие от солнечных панелей, солнечный коллектор производит нагрев материала-теплоносителя, а затем накопленная энергия используется для определенных целей (нагрева воды, работы отопительной системы, промывочных работ). Попросту говоря, солнечные коллекторы производят горячую воду.

Принцип работы солнечных панелей

Солнечные панели предназначены для преобразования энергии Солнца в электрическую. Их также называют солнечными батареями или солнечными модулями. Солнечная панель представляет собой устройство, состоящее из фотоэлементов, которые как раз и занимаются преобразованием одного вида энергии в другой. Фотоэлементы – это полупроводниковые пластины, напрямую преобразующие солнечное излучение в электрический ток. Между собой фотоэлементы соединяются в параллельные или последовательные электрические цепи, которые в совокупности работают как единый источник электрического тока.

Фотоэлементы изготавливают из разных элементов, но наиболее распространены солнечные элементы на основе кремния. Именно их выпускают в промышленных масштабах. Реже используют кадмий, теллур, селениды меди, аморфный кремний. Еще меньший процент – порядка 10%– составляют тонкопленочные солнечные элементы (например, CdTe).

Если говорить о кремниевых ФЭП, то каждый из элементов представляет собой тонкую пластину, состоящую из двух слоев кремния с собственными физическими свойствами, которые соединены между собой. Поскольку речь идет о полупроводниках, слои должны иметь разную проходимость для того, чтобы свободные электроны беспрепятственно переходили из одного слоя в другой. Ведь полупроводник – это материал, в атомах которого либо не хватает электронов (p-тип), либо есть лишние электроны (n-тип). Как правило, верхний слой – отрицательный (n-слой), он используется в качестве катода, а нижний слой – положительный (p-слой), он представляет собой анод. Излишек электронов из n-слоя может покидать свои атомы, тогда как p-слой эти электроны захватывает. Вот как раз солнечные лучи и выступают катализатором такой реакции – «выбивают» электроны из атомов n-слоя, а затем они летят занимать пустые места в p-слой. То есть при попадании на фотоэлемент частиц света (фотонов) из-за неоднородности кристалла между слоями полупроводника образуется вентильная фотоэлектродвижущая сила.

В результате этого возникает разность потенциалов и ток электронов, которые движутся по замкнутому кругу, выходя из p-слоя, проходя через внешнюю нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой. Таким образом, принцип работы солнечной панели напоминает своеобразное колесо, по которому вместо белки «бегают» электроны. При этом аккумулятор постепенно заряжается.

Верхний слой пластинки-фотоэлемента, который обращен к Солнцу, делается из кремния, но с добавлением фосфора. Он и становится источником избыточных электронов в системе p-n-перехода.

Виды пластин фотоэлементов

По технологии изготовления кремниевые пластины ФЭП бывают двух видов: монокристаллические и поликристаллические. Монокристаллические выполняются в виде квадрата со скошенными углами, поликристаллические – ровные квадраты. Но форма – не главное их различие.

Монокристаллические ФЭП делают из искусственно выращенного цельного кристалла кремния. А поликристаллические получают достаточно простым и недорогим методом постепенного охлаждения расплавленного кремния.

Поэтому монокристаллические фотоэлементы имеют однородную структуру и более высокий коэффициент полезного действия (КПД). Однако себестоимость их производства выше, они дороже, чем поликристаллические пластины.

Минусом поликристаллических пластин является их невысокая производительность – не больше 15%. Это связано с их недостаточной чистотой и внутренней структурой. КПД монокристаллического фотоэлемента достигает уже 20-25%.

КПД солнечных панелей

Стандартные фотоэлементы из кремния – однопереходные, то есть переток электронов осуществляется только через один p-n-переход, зона которого ограничена по энергии фотонов. Это означает, что каждый отдельно взятый ФЭП может производить электроэнергию лишь от лучей определенного узкого спектра. Остальная энергия света пропадает впустую. Это и является основной причиной не очень высокой эффективности фотоэлементов.

КПД солнечных панелей сегодня пытаются повысить разными способами. К примеру, одно из решений – каскадные (многопереходные) кремниевые элементы. Каждый из таких ФЭП имеет несколько переходов и рассчитан на определенный спектр солнечных лучей. В сумме эффективность преобразования лучей света в электрический ток увеличивается, а с ним и производительность панели в целом. Однако цена таких элементов выше, чем однопереходных. Поэтому в каждом конкретном случае потребитель должен решать дилемму, что ему важнее – цена или энергоэффективность.

Обычно число фотоэлементов в одной солнечной панели кратно 12, а номинальная мощность одного такого устройства составляет от 30 до 350 Вт. Наиболее низким КПД, от 5% до 10%, обладают аморфные, органические и фотохимические ФЭП. Такая панель площадью 1м 2 будет вырабатывать от 25 до 50 Вт/ч электроэнергии. КПД самых распространенных сегодня кремниевых солнечных батарей составляет 17 – 25%. Это означает, что на 1м 2 площади панели генерируется до 125 Вт/ч. Вообще же, разработчики по всему миру сегодня работают над увеличением КПД до 30%, и такие решения уже есть. Например, солнечные панели на основе арсенида галлия. Именно они способны составить конкуренцию кремниевым панелям, а при площади 1м 2 такая панель даст электроэнергии в объеме 150 Вт/ч.

Что влияет на энергоэффективность солнечных панелей?

Энергоэффективность – важный показатель солнечных панелей. Для примера, один фотоэлемент (одна пластина) способен при солнечной погоде произвести энергию, которой будет достаточно лишь для зарядки карманного фонарика. Поэтому когда речь идет о более серьезных масштабах генерирования электроэнергии, ФЭПы обычно объединяют в цепи (параллельное соединение – для увеличения напряжения, последовательное – для увеличения силы тока). Их количество и структура во многом определяют энергоэффективность панелей. Кроме того, на энергоэффективность гелиопанелей влияет такие факторы:

  • мощность светового потока;
  • угол падения солнечных лучей;
  • правильный подбор сопротивления нагрузки;
  • температура окружающего воздуха и самой панели;
  • отсутствие или наличие антибликового покрытия элементов.

Например, солнечный элемент и сама панель во время работы постепенно нагреваются. Та часть энергии, которая не пошла на производство электрического тока, трансформируется в тепло. Поэтому часто температура на поверхности панели может достигать значений более 50Сº. Однако чем выше температура поверхности, тем хуже работает фотоэлемент. Это значит, что одна и та же панель в разную погоду работает по-разному: менее эффективно в жару, и более эффективно в холод, а максимальную эффективность показывает в солнечный морозный день.

Преимущества и недостатки солнечных панелей

Как и любое устройство, солнечные панели имеют свои преимущества и недостатки.

Преимущества солнечных панелей

  • Неиссякаемость, возобновляемость и всеобщая доступность источника энергии, что важно особенно в условиях истощения других видов природного топлива (нефть, газ, уголь).
  • Экологичность. Солнечные электростанции действительно относятся к наиболее экологически чистым видам производства электроэнергии. При работе они не выделяют вредных примесей в воздух, работают бесшумно в сравнении с ветряками. Единственно к чему можно придраться, как и с электрокарами, так это к тому, что при производстве самих панелей, аккумуляторов, электростанций и различных проводников используются токсичные вещества, которые загрязняют окружающую среду.
  • Экономичность – солнечные панели дают возможность экономить электроэнергию и, соответственно, деньги. Ведь для выработки электричества применяются солнечные лучи, которые абсолютно бесплатны.
  • Износостойкость и большой срок службы. Гарантийный срок обычно составляет 25–30 лет, но фотоэлектростанция не прекратит свою деятельность и после этого периода. Износ происходит очень медленно, особенно если нет подвижных частей.
  • Одномоментность переработки солнечной энергии в электрическую.
  • Выработка энергии не только в солнечную, но и в пасмурную погоду.
  • Возможность автономизации системы энергоснабжения объекта и независимость от централизованного электроснабжения.
  • Простота, стабильность, надежность конструкции и ее монтажа.
  • Можно нарастить конструкцию, если есть необходимость увеличения мощности системы это легко сделать благодаря модульности солнечных панелей.

Недостатки солнечных панелей

  • Высокая стоимость и длительный период окупаемости (до 10 лет).
  • Невысокий КПД.
  • Низкая энергоэффективность в пасмурную погоду и ночью.
  • Неравномерная выработка электричества, которая зависит от освещенности и погоды. Это можно компенсировать, если подключить систему к сети – тогда днем можно будет продавать излишнее электричество электрокомпании, а ночью использовать централизованное электроснабжение.
  • Большие размеры. Панели занимают много места – для их установки требуется наличие значительных площадей. Они могут занимать, например, всю крышу и стены строения.
  • Сложность использования в регионах с большим количеством осадков, особенно снега.
  • Потребность в установке дополнительных устройств для получения переменного тока (солнечные панели производят только постоянный ток) и для накопления энергии (потому что электричество вырабатывается только на протяжении светового дня).

Где применяются солнечные панели

По мере развития технологий, совершенствуется и солнечная энергетика. Гелиопанели становятся дешевле и эффективней, разрабатываются новые инженерные решения, расширяется сфера их сфера применения. Из солнечных панелей создают целые солнечные электростанции (СЭС), которые могут производить электроэнергию в больших масштабах. Поэтому сегодня солнечные панели применяют не только в быту, но также в промышленности, сельском хозяйстве, космической отрасли и дорожном строительстве. Солнечная энергия используется для уличного освещения, электрокаров, электромоторных судов и других видов транспорта, в частных домовладениях, смартфонах и разных гаджетах, в детских игрушках и даже в устройствах для барбекю. Но судя по всему, это далеко не предел, и сферы применения солнечных панелей будут развиваться еще активнее и все больше входить в нашу жизнь.

Источник

Оцените статью