Аккумуляторы теплоты фазового перехода

Аккумулирование тепла с использованием фазового перехода

Под аккумулированием на основе теплоты фазового перехода в большинстве случаев понимают аккумулирование теплоты плавления. Часто как дополнение к теплоте фазового перехода используется теплота нагрева (внутренняя энергия) жидкости или твердой фазы. Это увеличивает емкость аккумулятора, но лишает возможности использования преимуществ теплоснабжения при постоянной температуре.

Технические решения. Системы аккумулирования тепловой энергии, основанные на использовании теплоты фазового перехода, активно исследуются, но многие из них в настоящее время находятся еще на стадии разработки и внедрения. Их главными преимуществами являются высокая тепловая емкость, постоянная рабочая температура и низкое давление; недостатками — невысокая стабильность большинства ТАМов с фазовым переходом и усложнение конструкции теплового аккумулятора, необходимость решения проблемы теплообмена с аккумулирующей средой.

В последнее время в тепловом аккумулировании в интервале температур до 100 °С для теплоаккумулирующих материалов с фазовым переходом не было предложено никаких новых веществ, кроме кристаллогидратов. Однако в состав кристаллогидратов входит вода и поэтому они недостаточно стабильны; максимальным для кристаллогидратов являются 50 рабочих циклов заряд—разряд. При дальнейшей эксплуатации изменяются их физико-химические и теплофизические характеристики, что приводит к выходу из строя теплового аккумулятора, в котором они применяются .

Аккумуляторы на основе теплоты фазового перехода относятся к системам с постоянным давлением и массой; изменения объема ТАМов с фазовым переходом, которые происходят в процессе проведения циклов плавление—затвердение, как правило, достаточно незначительны.

Эффективная аккумулирующая среда на основе фазового перехода должна иметь следующие свойства:

  • высокую энтальпию фазового перехода и плотность;
  • удобную для эксплуатационных условий температуру плавления;
  • высокую теплоемкость в твердой и жидкой фазах;
  • высокую теплопроводность в твердой и жидкой фазах;
  • отсутствие тенденции к расслоению теплоаккумулирующего материала и температурную стабильность;
  • отсутствие возможности переохлаждения при затвердении и перегрева при плавлении;
  • низкое термическое расширение и незначительное изменение объема при плавлении;
  • слабую химическую активность, что позволяет использовать недорогие конструкционные материалы для изготовления тепловых аккумуляторов и вспомогательного оборудования;
  • безопасность (отсутствием отравляющих паров, а также опасных реакций с рабочей или теплообменной средой);
  • большие ресурсы работы. Теплоаккумулирующие материалы, способные накапливать тепло за счет фазовых переходов и их основные теплофизические и энергетические характеристики. Основные теплофизические и энергетические характеристики ТАМов-кристаллогидратов приведены в соответствующей таблице.
Читайте также:  Зарядное устройство для аккумулятора дрона

Употребляемое в таблицах понятие «удельная энергия» — это удельный показатель энергоемкости на единицу массы или объема, который учитывает теплоту фазового перехода и теплоту, накопленную за счет теплоемкости в процессе нагрева до температуры плавления. В качестве теплоаккумулирующих материалов с фазовым переходом используются как моносоставные, так и полисоставные (в том числе бинарные) материалы.

Применение бинарных систем обеспечивает некоторые преимущества:

  • точку плавления можно выбирать изменением количественного соотношения солей в смеси;
  • высокая плотность энергии может быть достигнута даже при низких температурах плавления;
  • дорогостоящие вещества с высокими теплоаккумулирующими свойствами могут быть использованы в смеси с дешевыми, при этом тепловая емкость остается почти неизменной. Бинарные системы при их использовании в аккумуляторах должны плавиться и затвердевать аналогично гомогенному чистому веществу. Этому условию отвечают два типа специальных составов смесей — эвтектическая и дистектическая. Эвтектический состав смеси ТАМов представлен нижней точкой на диаграммах плавления; дистектический состав представляет собой смесь, которая ведет себя почти как чистое вещество.

Результаты анализа известных теплоаккумулирующих материалов показывают, что наиболее эффективными для применения в ТА с невысокой рабочей температурой являются: парафин — вследствие высокой энтальпии и неагрессивности, вода — из-за низкой стоимости и высокой теплоемкости, тяжелый бетон — благодаря конструкционным свойствам и хорошей теплопроводности. Низкотемпературное аккумулирование. Аккумулирование с использованием энергии фазового перехода (замораживание воды при О °С) является очень эффективным методом низкотемпературного аккумулирования. Во многих государствах разработаны и применяются различные системы аккумулирования с замораживанием воды. Аккумулирование энергии посредством использования льда особенно выгодно в климатических зонах, где нагрузки на охлаждение в летнее время можно сравнить с нагрузками обогрева зимой, что предполагает годовое циклирование, т. е. эффективное двойное использование системы аккумулирования.

Читайте также:  Генератор перезаряжает аккумулятор причины

Источник

Аккумуляторы фазового перехода вещества

Использование теплоты плавления некоторых веществ для аккумулирования теплоты обеспечивает высокую плотность запасаемой энергии, небольшие перепады температур и стабильную температуру на выходе из теплового аккумулятора. Однако большинство ТАМ в расплавленном состоянии являются коррозионно-активными веществами, в большинстве своем имеют низкий коэффициент теплопроводности, изменяют объем при плавлении и относительно дороги. В настоящее время известен достаточно широкий спектр веществ, обеспечивающих температуру аккумуляции от 0 до 1400 °C. Следует отметить, что широкое применение тепловых аккумуляторов с плавящимся ТАМ сдерживается, прежде всего, соображениями экономичности создаваемых установок.

При небольших рабочих температурах (до 120 °C) рекомендуется применение кристаллогидратов неорганических солей (Табл.8), что связано в первую очередь с использованием в качестве ТАМ природных веществ. Для реального применения рассматриваются только вещества, не разлагающиеся при плавлении либо растворяющиеся в избыточной воде, входящей в состав ТАМ.

Таблица 8. Основные свойства ТАМ на основе кристаллогидратов

ТАМ , К , кДж/кг Удельная теплоемкость, Плотность, Коэффициент
теплопроводности, вязкости,
Полиэтилен- гликол­ь 293-298 2,26 0,16 11,5
Октадекан 2,18 0,15 3,9
Парафин 46-48 2,08 0,34
Нафталин 0,8
Ацетамин

Использование органических веществ (Табл.9) практически полностью снимает вопросы коррозионного разрушения корпуса, обеспечивает высокие плотности запасаемой энергии, достаточно хорошие технико-экономические показатели. Однако в процессе работы теплового аккумулятора с органическими ТАМ происходит снижение теплоты плавления вследствие разрушения длинных цепочек молекул полимеров, а из-за низкого коэффициента теплопроводности требуется создание и применение развитых поверхностей теплообмена, что, в свою очередь, накладывает конструктивные ограничения на использование ТА.

Таблица 9. Основные свойства плавящихся органических ТАМ

Перспективно использовать смеси и сплавы органических и неорганических веществ, позволяющие обеспечивать необходимые значения температур плавления и большие сроки службы. Известно, что лучшим вариантом теплообменной поверхности является ее полное отсутствие, т. е. непосредственный контакт теплоаккумулирующего материала и теплоносителя. Следовательно, необходимо подбирать как ТАМ, так и теплоносители по признакам, обеспечивающим работоспособность конструкций.

Теплоаккумулирующие материалы в этом случае должны отвечать следующим требованиям:

— кристаллизоваться отдельными кристаллами;

— иметь большую разность плотностей твердой и жидкой фаз;

— быть химически стабильными;

— не образовывать эмульсий с теплоносителем.

Теплоносители подбираются по следующим признакам:

— химическая стабильность в смеси с ТАМ;

— большая разница плотностей по отношению к ТАМ;

— малая способность к вспениванию;

— и ряд других требований, вытекающих из особенностей конструкции [54,55].

Основные конструктивные исполнения тепловых аккумуляторов фазового перехода представлены на Рис. 27.

Рис.27. Основные типы тепловых аккумуляторов фазового перехода: а – капсульный; б – кожухотрубный; в, г – со скребковым удалением ТАМ; д – с ультразвуковым удалением ТАМ; е, ж – с прямым контактом и прокачкой ТАМ; з, и – с испарительно-конвективным переносом тепла; 1 – жидкий ТАМ; 2 – твердый ТАМ; 3 – поверхность теплообмена; 4 – корпус теплового аккумулятора; 5 – теплоноситель; 6 – граница раздела фаз; 7 – частицы твердого ТАМ; 8 – промежуточный теплообменник; 9 – паровое и жидкостное пространства для теплоносителя.

Дата добавления: 2017-12-07 ; просмотров: 2617 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

тепловой аккумулятор фазового перехода

Изобретение относится к двигателестроению, а именно к устройствам для обогрева двигателя внутреннего сгорания строительных, дорожных, лесозаготовительных, коммунальных и других мобильных машин и автомобилей в условиях безгаражного хранения при отрицательных температурах окружающей среды. Сущность изобретения: в аккумуляторе фазового перехода, содержащем теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, блок капсул заполнен изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, а капсулы выполнены из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя. Такой аккумулятор имеет повышенную надежность вследствие исключения большого количества запаянных капсул. 2 ил.

Формула изобретения

Тепловой аккумулятор фазового перехода, содержащий теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, блок капсул, заполненных изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, отличающийся тем, что капсулы выполнены из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя.

Описание изобретения к патенту

Изобретение относится к двигателестроению, а именно к устройствам для обогрева двигателя внутреннего сгорания (ДВС) строительных, дорожных, лесозаготовительных, коммунальных и других мобильных машин и автомобилей в условиях безгаражного хранения при отрицательных температурах окружающей среды.

Известна установка воздухообогрева двигателей автомобилей, состоящая из узла нагрева и подачи воздуха, диффузора, воздуховодов и соединительных рукавов. В свою очередь узел нагрева и подачи воздуха состоит из калорифера и вентилятора, приводимого в работу от электродвигателя. При функционировании установки калорифер нагревает воздух, который с помощью вентилятора подается через диффузор, воздуховоды и соединительные рукава на радиатор или в картер обогреваемого двигателя [1].

Данная установка может применяться в стационарных условиях автотранспортного предприятия как групповое средство предпускового подогрева ДВС автомобилей при их безгаражном хранении и требует значительных затрат энергии.

Известен также жидкостный предпусковой подогреватель ДВС, предназначенный для обогрева деталей и сред двигателя и состоящий из котла, системы подачи топлива, системы подачи воздуха, жидкостного насоса, трубопроводов и устройств автоматики. При работе данного подогревателя обогрев блока и головки двигателя осуществляется жидким теплоносителем (водой, тосолом) через зарубашечное пространство, а моторное масло подогревается отработавшими газами подогревателя.

Многочисленные исследования эксплуатационной надежности подогревателей показывают, что они обладают повышенной пожароопасностью из-за большого расхода топлива, замыкания электропроводки или выхода из строя электродвигателя вентилятора. Кроме того, с понижением температуры окружающего воздуха в подогревателе ухудшается испаряемость топлива и образуются ледяные пробки в системе его подачи. При розжиге подогревателя это приводит к срыву факела, при работе — к отказам подогревателя или снижению его теплопроизводительности [2].

Наиболее близким аналогом [3] предлагаемого изобретения является тепловой аккумулятор фазового перехода (ТАФП), состоящий из теплоизолированного вакуумированного цилиндрического корпуса со съемной крышкой, имеющей входное и выходное отверстия, с запрессованными в них впускной и выпускной трубами, размещенного в корпусе блока из параллельно расположенных в шахматном порядке трубчатых капсул, заполненных изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом (ТАМом). ТАФП подключается в систему охлаждения ДВС мобильной машины.

Накопление ТАФП тепловой энергии осуществляется при работе ДВС за счет теплообмена его охлаждающей жидкости с теплоаккумулирующим материалом, находящимся в трубчатых капсулах. При этом ТАМ нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает равновесие между ним и охлаждающей жидкостью.

Хранение тепловой энергии осуществляется за счет наличия в конструкции аккумулятора теплоизолированного вакуумированного корпуса.

Разогрев ДВС мобильной машины происходит за счет теплообмена охлаждающей жидкости (ОЖ) с расплавленным ТАМом, при котором последний претерпевает обратимый фазовый переход из жидкого состояния в твердое и выделяет скрытую теплоту кристаллизации. Выделяющаяся тепловая энергия переносится ОЖ и передается двигателю.

Описанный выше ТАФП состоит из большого количества трубчатых капсул, изготовление и заполнение которых представляют собой трудоемкий процесс. Более того, большое количество запаянных капсул снижает надежность конструкции аккумулятора.

Задача, стоящая перед предлагаемым изобретением, состоит в повышении надежности конструкции теплообменника теплового аккумулятора.

Тепловой аккумулятор фазового перехода состоит из теплоизолированного вакуумированного цилиндрического корпуса, съемной крышки, входного и выходного отверстий. В эти отверстия запрессованы впускная и выпускная трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул. Капсулы заполнены теплоаккумулирующим материалом. Теплообменник монтируется на съемной крышке при помощи болтового соединения и приваривается к корпусу.

Устройство работает следующим образом.

В период зарядки теплового аккумулятора поток ОЖ из зарубашечного пространства ДВС поступает во впускную трубу, проходит через кольцевые отверстия и выходит из аккумулятора в выпускную трубу. ТАМ, находящийся в цилиндрических капсулах, нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и ОЖ.

Хранение тепловой энергии осуществляется за счет наличия вакуумированного цилиндрического корпуса.

В период разрядки теплового аккумулятора происходит обратимый процесс, при котором ТАМ охлаждается и кристаллизуется с выделением скрытой теплоты фазового перехода, а поток ОЖ нагревается и поступает в зарубашечное пространство ДВС.

Предлагаемая конструкция теплового аккумулятора фазового перехода по сравнению с прототипом является более надежной, так как необходимая площадь теплообмена ОЖ с ТАМом реализуется меньшим количеством элементов, состоящих из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя. Новым в заявляемом изобретении является выполнение капсул в виде коаксиально расположенных цилиндров.

Указанный признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого устройства условию патентоспособности «изобретательский уровень».

Предлагаемый тепловой аккумулятор фазового перехода представлен на фиг. 1 и 2.

Он состоит из вакуумированного корпуса 1, съемной крышки 2, имеющей входное 3 и выходное 4 отверстия, в которые запрессованы впускная 5 и выпускная 6 трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул 7 с зазорами 8 для прохода жидкости. Вся конструкция теплообменника смонтирована на съемной крышке 2, которая закреплена при помощи болтового соединения 10 к кольцу 9, приваренному к корпусу.

Данный аккумулятор включен в систему охлаждения ДВС мобильной машины. Накопление им тепловой энергии осуществляется следующим образом.

При работе ДВС поток ОЖ поступает в впускную трубу 5, затем проходит через кольцевые отверстия 8 и выходит из аккумулятора в выпускную трубу 6. При этом ТАМ, находящийся в цилиндрических капсулах 7, нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и ОЖ.

Хранение тепловой энергии осуществляется за счет наличия в конструкции теплового аккумулятора вакуумированного корпуса 1. Отдача аккумулятором тепловой энергии (разогрев двигателя) осуществляется путем прокачки теплоносителя через впускную трубу 5, кольцевые зазоры 8 и выпускную трубу 6. При этом происходит обратимый фазовый переход, в результате которого ТАМ находится в капсулах 7, кристаллизуется и отдает ранее запасенную энергию теплоносителю. Теплоноситель нагревается от температуры окружающей среды до температуры +35 — 50 o С и передает эту энергию деталям двигателя.

Вышесказанное позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности «промышленная применимость».

Источники информации
1. Крамаренко Г. В. , Николаев В.А., Шаталов А.И. Безгаражное хранение автомобилей при низких температурах. — М.: Транспорт, 1984, 136 с.

2. Системы подготовки двигателей экскаваторов и кранов к запуску при низких температурах. /В.А. Карепов, А.И. Хорош. — Обзор, вып. 1, М.: ЦНИИТЭстроймаш, 1981, 52 с.

3. Заявка RU 97113939/06, МПК 6 F 24 H 7/00, 1999 г.

Источник

Оцените статью
Классы МПК: F24H7/00 Аккумуляторные нагреватели, те нагреватели, в которых энергия хранится в теплоемких массах для последующего ее использования
Автор(ы): Шульгин В.В. , Гулин С.Д. , Никифоров Г.И. , Кинев Ю.Г. , Крапивко О.В. , Золотарев Г.М.
Патентообладатель(и): Военный инженерно-технический университет
Приоритеты: