Аккумуляторный элемент для аккумулятора

Как соединить аккумуляторные элементы, паять и где купить

Строго говоря, правила сборки аккумуляторов из отдельных литиево-ионных элементов справедливы не только для шуруповертов, а, к примеру, для аккумулятора электровелосипеда. Я расскажу о том, где лучше купить элементы, как их соединять между собой для получения нужного напряжения и емкости, как обойтись без точечной сварки, скрепляя их в один аккумулятор.

Типы элементов

Шуруповерты работают на двух основных видах элементов – литий-ионные (Li-Ion) и никель-кадмиевые (Ni-Cd). У обоих этих видов есть как свои преимущества, так и недостатки:

Литий-ионные. Самый оптимальный вариант. Основные преимущества:

1) Почти нет «эффекта памяти» заряда, то есть, можно заряжать на любом этапе зарядки, не дожидаясь полной разрядки;

2) Циклы «заряд-разряд» — 1500 и более, что в 2-3 раза больше никель-кадмиевых;

Никель-кадмиевые аккумуляторы держат около 500 циклов «заряд-разряд», перед зарядкой требуют разрядки. Кроме того, они больше весят, что при работе с шуруповертом имеет значение.

Плюс, как по мне, у никель-кадмиевых элементов все же есть – они лучше себя ведут при работе на морозе.

Где покупать?

Я покупаю на АлиЭкспресс, ищем надежных продавцов, читаем отзывы и смело заказываем.

Как соединять?

Соединяются элементы параллельно или последовательно, чаще – комбинированная схема.

Параллельное соединение. При таком способе суммируется емкость двух (трех или более) элементов. Напряжение остается тем же, как и у каждого элемента.

Последовательное соединение. При таком соединении суммируется напряжение, то есть, если напряжение каждого из двух элементов – 12 вольт, то при соединении получим 24 вольта , но емкость будет ровна емкости каждого элемента. Нагляднее смотрите на фото.

Чем и как паять?

Паять литий-ионные элементы стоит с осторожностью, ибо они плохо переносят перегрев. По-хорошему, их спаивают при помощи контактной (точечной) сварки, но вот у многих ли дома есть такое оборудование?

Делаем так: зачищаем поверхность контактов, наносим кисточкой паяльный флюс ЛТИ-120 , аккуратно, чтобы он не залил стенки аккумулятора. Забираем припой примерно на каплю, и быстро наносим его на контакт аккумулятора. Чтобы уменьшить перегрев, я тут же прикладывал к припою ватку, смоченную в спирте.

То же самое проделываем с соединительной пластинкой. После чего припаиваем пластинку к аккумулятору, быстро и с охлаждением спиртом.

Таким макаром я спаял аккумулятор для электровелосипеда и шуруповерта, более полугода – полет нормальный. Ни одну «банку» не перегрел, так что не стоит слушать «икспердов» о том, что тут годится только точечная сварка.

На али продают пластиковые решетки для элементов – это если вы собираете аккум для велика.

Источник

Замена элементов в аккумуляторной батарее шуруповёрта своими руками

Здравствуйте!
Предлагаю Вашему вниманию обзор с пошаговой инструкцией по замене элементов в аккумуляторной батарее шуруповёрта.
В обзоре немного текста, чуть больше фотоматериала, а также ответ на вопрос: «Какова ёмкость китайских аккумуляторов на 2500 мА/ч?».

Заитрересовавшихся прошу заходить…
Есть у меня такой недорогой шуруповёрт Roteri RCD-14.4, который служит уже несколько лет, но со временем заряда аккумулятора стало хватать всё меньше и меньше. Поиски подходящего аккумулятора в магазинах ни к чему не привели. Поэтому было решено заказать аккумуляторные элементы и заменить их самостоятельно.
Разобрав аккумуляторную батарею представилось обзору следующее:Батарея состоит из 12 элементов SC Ni-Cd.
Решено, заказано, получено:Для проверки работоспособности всех элементов, а также для контроля ёмкости, было использовано зарядное устройство La Crosse RS-700, обзор которого я уже делал здесь.
По габаритам эти аккумуляторы невозможно штатно установить в зарядное устройство, поэтому для обеспечения контакта с устройством были использованы аккумуляторы типа АА с изолентой на одном конце, а к обозреваемым аккумуляторным элементам были припаяны провода:Само зарядное устройство было переведено в режим ТЕСТ, и так 3 раза, вот что из этого получилось:Итак, из 12 аккумуляторов 3 оказались неисправными (реальная ёмкость около 100 мА/ч), у остальных ёмкость оказалась в диапазоне от 900мА/ч до 1500 мА/ч, никак не 2500 мА/ч. Это ответ на вопрос, заданный в «топике».
Пришлось писать продавцу рекламацию, в ответ продавец предложил прислать бесплатно 4 таких же аккумулятора. Я согласился. Посылка дошла. На этот раз все 4 аккумулятора оказались работоспособными со схожей с другими ёмкостью.
Приступаем к замене элементов:Для лужения лепестков использовался флюс ЛТИ-120, обычной канифолью не лудилось. Паять лучше на «минусовой» стороне аккумулятора, т.к. корпус аккумулятора является «минусом» и если произойдёт нарушение изоляции в месте пайки, то ни к чему не приведёт. В конце вся батарея была плотно зафиксирована скотчем и установлена в корпус:
Проверка работы шуруповёрта показала, что 600 рублей потрачены не зря!

На сём разрешите откланяться, и да, прошу не скупиться нажимать на «Обзор понравился», т.к. это является стимулом для написания новых обзоров 🙂

Источник

Элементы для тяговых аккумуляторов

Отображение 1–30 из 170

Аккумулятор Емкость Напряжение Габариты (ДхШхВ, мм) Цена, р
Элементы 10 PzSH 1050 Ah для тяговых аккумуляторов Ah v от 17075
Элементы 10 PzSH 1250 Ah для тяговых аккумуляторов Ah v от 24009
Элементы 10 PzSH 950 Ah для тяговых аккумуляторов Ah v от 19513
Элементы 10 PzSL 1150 Ah для тяговых аккумуляторов Ah v от 21897
Элементы 10 PzSL 600 Ah для тяговых аккумуляторов Ah v от 14011
Элементы 10 PzSL 800 Ah для тяговых аккумуляторов Ah v от 16743
Элементы 10 PzSL 900 Ah для тяговых аккумуляторов Ah v от 18264
Элементы 2 PzB 150 Ah для тяговых аккумуляторов Ah v от 5707
Элементы 2 PzB 200 Ah для тяговых аккумуляторов Ah v от 6530
Элементы 2 PzS 100 Ah для тяговых аккумуляторов Ah v от 4638
Элементы 2 PzS 110 Ah для тяговых аккумуляторов Ah v от 5167
Элементы 2 PzS 140 Ah для тяговых аккумуляторов Ah v от 5534
Элементы 2 PzS 160 Ah для тяговых аккумуляторов Ah v от 5999
Элементы 2 PzS 200 Ah для тяговых аккумуляторов Ah v от 6550
Элементы 2 PzS 240 Ah для тяговых аккумуляторов Ah v от 7466
Элементы 2 PzSH 130 Ah для тяговых аккумуляторов Ah v от 5349
Элементы 2 PzSH 170 Ah для тяговых аккумуляторов Ah v от 5739
Элементы 2 PzSH 190 Ah для тяговых аккумуляторов Ah v от 6229
Элементы 2 PzSH 210 Ah для тяговых аккумуляторов Ah v от 6675
Элементы 2 PzSH 240 Ah для тяговых аккумуляторов Ah v от 6817
Элементы 2 PzSH 250 Ah для тяговых аккумуляторов Ah v от 6884
Элементы 2 PzSH 290 Ah для тяговых аккумуляторов Ah v от 7786
Элементы 2 PzSH 310 Ah для тяговых аккумуляторов Ah v от 8175
Элементы 2 PzSL 100 Ah для тяговых аккумуляторов Ah v от 4671
Элементы 2 PzSL 120 Ah для тяговых аккумуляторов Ah v от 5258
Элементы 2 PzSL 160 Ah для тяговых аккумуляторов Ah v от 5636
Элементы 2 PzSL 180 Ah для тяговых аккумуляторов Ah v от 6117
Элементы 2 PzSL 220 Ah для тяговых аккумуляторов Ah v от 6684
Элементы 2 PzSL 230 Ah для тяговых аккумуляторов Ah v от 6752
Элементы 2 PzSL 280 Ah для тяговых аккумуляторов Ah v от 7630

Для комплектации аккумуляторных батарей любых типов техники применяются элементы тягового аккумулятора. Каждый такой элемент содержит номинальное напряжение 2V. Последовательное соединение таких элементов образует аккумулятор с напряжением 24, 48, 80V. В процессе работы некоторые тяговые элементы могут выходить из строя, но эта проблема быстро решается путем замены на новую ячейку.

Наша компания предлагает к реализации отдельные элементы для тяговых АКБ, которые избавят вас от необходимости покупать новый аккумулятор и существенно сократят расходы.

Типы тяговых элементов

  • PzS, PzB – классический тип с жидким электролитом, обеспечивающий до 1500 циклов заряда/разряда
  • PzSL – по сравнению со стандартной имеют повышенную емкость на 10-17% при тех же размерах аккумулятора
  • PzSH – новый тип батарей, в которых емкость увеличена на 20% без изменения размера аккумулятора

Элемент тяговых батарей в соответствии со своим типом имеет параметры длины, ширины, высоты и веса, отвечающие требованиям стандартов DIN. Сконструирован из компонентов высокого качества, пластины произведены по лучшим технологиям. Благодаря этому основные параметры элементов значительно улучшились: увеличились параметры емкости, улучшились показатели циклической работы, повысилась устойчивость к глубокому разряду, увеличился срок службы. К тому же новые технологии предусматривают меньшее использование свинцовых материалов для производства элементов.

Важные технические характеристики

  • продолжительный срок службы до 1500 циклов
  • обеспечение малого сопротивления и низкого уровня саморазряда благодаря высококачественным компонентам
  • высокий уровень механической прочности

Использование надежных элементов тяговых аккумуляторов поможет продлить срок службы АКБ за счет сокращения расхода энергии при эксплуатации; сократит время заряда, что будет способствовать повышению пригодности аккумулятора; снизит эксплуатационные расходы.

Мы всегда поможем приобрести элементы тяговых батарей необходимого типа и габаритных размеров, проконсультируем по вопросу технических возможностей и возможности применения, обговорим приемлемую для вас стоимость.

Источник

Какие бывают аккумуляторы в мобильной, компьютерной и бытовой технике

Содержание

Содержание

Аккумуляторы окружают нас повсеместно. Их можно встретить как в привычных каждому пользователю мобильных гаджетах, так и в сложных системах резервного электропитания. В каждой из областей используется свой тип аккумуляторной батареи, в которой ее характеристики «раскрываются» наилучшим образом. В данном материале поговорим о типах аккумуляторных элементов, областях применения и основных правилах эксплуатации.

Аккумуляторы. Общие принципы

По историческим меркам аккумулятор — довольно «молодое» изобретение, которому немногим более 160 лет. Основной принцип работы любого аккумуляторного элемента — протекание в нем обратимой электрохимической реакции, т. е. при приложении к контактам элемента постоянного напряжения, на его пластинах (электродах) накапливается электрическая энергия, при приложении нагрузки — происходит ее расходование. Причем протекает такая реакция на протяжении большого количества циклов заряда/разряда. Как правило, возможное количество перезарядок зависит от типа аккумуляторного элемента, но в среднем, современный аккумулятор способен обеспечить 300–1000 полных циклов.

Работоспособным считается аккумулятор, остаточная емкость которого составляет 70–80 % от начальной. Элементы с меньшими показателями остаточной емкости считаются непригодными для дальнейшей эксплуатации, поскольку не могут обеспечить расчетную автономность.

Какого бы типа не был аккумулятор, костяк конструкции и основной принцип действия у них остается неизменным. В каждом аккумуляторе есть два электрода (положительный и отрицательный, иначе именуемые анод и катод), погруженные в специальную среду — электролит, являющуюся прекрасным «поставщиком» ионов вследствие электролитической диссоциации.

Ион — атом или молекула, несущая на себе электрический заряд. Если ион положительно заряжен — его называют катион, если отрицательно — анион.

В зависимости от используемого материала электродов и применяемого типа электролита существуют различные вариации аккумуляторных элементов, каждый из которых имеет свои конструкционные и эксплуатационные особенности. Ниже поговорим о наиболее распространенных типах аккумуляторов, сферах их применения и особенностях эксплуатации.

Свинцовые аккумуляторы

Несмотря на преклонный возраст технологии, свинцовые аккумуляторы до сих пор успешно применяются в системах резервного питания, автомобильном транспорте, системах аккумулирования возобновляемых источников энергии (солнечная и ветряная энергетика, гидроэнергетика и т. д.).

Как видно из названия, в качестве основного материала, из которого изготавливают электроды, выступает свинец. Точнее, для производства положительных электродов — просто свинец, а для изготовления отрицательных электродов — оксид свинца. В качестве электролита, как правило, выступает раствор серной кислоты.

Существует большое количество конструкций свинцового аккумулятора, направленных на улучшение его эксплуатационных характеристик. Поскольку свинец сам по себе достаточно мягкий металл с невысокой физической прочностью, в чистом виде он слабо противостоит вибрационным нагрузкам, поэтому для использования аккумуляторов, например, в транспорте, в сплав свинца добавляют кальций, делающий структуру металла более прочной.

Для использования свинцового аккумулятора в источниках бесперебойного питания, дабы не допустить контакт пользователя с кислотой, исключить необходимость обслуживания, а также не создавать условия для взрыва водорода, выделяемого из АКБ, при ее заряде, используют свинцовые аккумуляторы определенного типа. Такими аккумуляторами являются источники питания типа AGM (Absorbent Glass Mat), в которых абсорбированным электролитом (не жидким) пропитан специальный пористый мат из стекловолокна.

Довольно часто свинцовые аккумуляторы, выполненные по технологии AGM, ошибочно называют гелевыми. На самом деле это не так. Гелевые аккумуляторы — отдельная ветвь развития свинцовых источников питания.

Аккумуляторы, электролитом в которых выступает раствор серной кислоты в желеобразном состоянии, называются гелевыми. Они рассчитаны на медленную отдачу энергии, поэтому основная область их применения — использование в инертных системах накопления и расходования электроэнергии (солнечная энергетика, питание моторов кресел для инвалидов, гольф-каров и т. д.).

К неоспоримым преимуществам свинцовых аккумуляторов относятся их невысокая стоимость и возможность работы в широком диапазоне температур окружающей среды (от — 40 до + 40 ° С).

Один свинцовый аккумуляторный элемент выдает напряжение порядка 2 В и способен выдать удельной энергии из расчета 30–60 Вт*ч с 1 кг массы, что в сравнении с другими типами — достаточно мало. Такие аккумуляторы имеют высокие значения саморазряда, а их глубокий разряд приводит к разрушению и осыпанию пластин электродов и безвозвратной порче аккумулятора.

Никель-кадмиевые аккумуляторы

Следующим типом аккумуляторных элементов, активно использующихся во многих сферах, являются никель-кадмиевые аккумуляторы (NiCd). Их можно встретить в детских игрушках, пультах управления, фонариках, ручном аккумуляторном электроинструменте и т. д.

Конструкция элемента не претерпела изменений, только в качестве материала для изготовления электродов используются никель и кадмий, а точнее гидраты закиси этих металлов. В качестве электролита применяют гидроксид калия. Один элемент на основе этих металлов может выдать напряжение 1,2–1,35 В, а значение удельной энергии находится в диапазоне 40–80 Вт*ч/кг.

Никель-кадмиевые аккумуляторы — одни из самых морозоустойчивых. Они работают без существенной потери своей емкости при температурах, близких к –50 ° С, к тому же, абсолютно не боятся глубокого разряда, и после цикла зарядки полностью восстанавливают свои эксплуатационные характеристики.

Хранить NiCd аккумуляторы рекомендуется полностью разряженными.

К отрицательным моментам относят их малую удельную емкость, высокий саморазряд, длительное время зарядки (восполнять энергию нужно малыми зарядными токами) и ярко выраженный «эффект памяти».

Чтобы не испортить аккумулятор, его необходимо заряжать только после полного разряда! Пренебрежение этим правилом повлечет быструю потерю емкости и выход элемента из строя.

Заряжают NiCd-элементы малыми зарядными токами, значения которых составляет порядка 10 % от емкости аккумулятора.

Никель-металлогидридные аккумуляторы

Логическим продолжением никель-кадмиевых аккумуляторов стали никель-металлогидридные (NiMH) элементы питания. В них учтены и практически устранены недостатки предшественников. Аккумуляторы при тех же массогабаритных показателях имеют большую в 2–3 раза емкость, обладают высокой надежностью, с легкостью переносят глубокий разряд и перезаряд, менее подвержены эффекту памяти.

Немаловажную роль в популяризации и широком распространении NiMH элементов сыграл тот факт, что они не содержат в своем составе кадмия, очень вредного для окружающей среды металла. Следовательно, с повестки дня снимаются вопросы правильного хранения и утилизации таких элементов.

Для производства анода используют гидрид никеля с лантаном или литием — так называемый металлогидридный электрод. В качестве катода — оксид никеля. Электролитом выступает соединение гидроксида калия.

Заряжают никель-металлогидридные аккумуляторы большими (в сравнении с NiCd-элементами) токами, величины которых составляют порядка 20–25 % от емкости аккумулятора, но очень важно контролировать температуру элемента во время заряда. Если она превышает 45 °С, нужно немедленно прервать процесс зарядки, в противном случае существует риск порчи элемента.

Зарядку для NiMH-аккумуляторов можно использовать в паре с NiCd-элементами. Обратная совместимость недопустима! Алгоритмы зарядки никель-кадмия более примитивны, они могут причинить вред NiMH-элементу.

Никель-металлогидридные аккумуляторы хранят полностью заряженными. Поскольку этому типу элементов присущ высокий саморазряд, для сохранения работоспособности элемента его нужно периодически подвергать полному циклу разряда/заряда.

Никель-металлогидридные аккумуляторы используют в тех же сферах, что и никель-кадмиевые, однако, благодаря повышенной емкости, их охотно применяют в фототехнике, использующей для питания элементы типа АА и ААА.

NiMH элементы — самые морозоустойчивые. Они без проблем переносят эксплуатацию при экстремально низких температурах, достигающих -60 °С. По этой причине их довольно успешно применяют в электроинструменте, используемом при выполнении работ на открытом воздухе в зимнее время.

Один элемент генерирует 1,2–1,25 в ЭДС, а его удельная энергия составляет 60–75 Вт*ч/кг. Теоретический расчетный «потолок» этого параметра находится на уровне 300 Вт*ч/кг, но видимо технологии производства NiMH-элементов, еще не до конца совершенны.

Литий-ионные аккумуляторы

Современные мобильные устройства уже сложно представить без литий-ионных аккумуляторов. Именно их разработка дала мощный толчок к развитию легких и миниатюрных решений источников питания, и, как следствие, миниатюризации всего сегмента мобильных гаджетов.

Сильными сторонами Li-ion являются высокая плотность аккумулируемой энергии, ее удельное значение, в большинстве случаев, составляет солидные 280 Вт*ч/кг, недостижимые при использовании аккумуляторов другого типа. Именно по этой причине Li-ion аккумуляторы используются не только для питания персональных гаджетов, но и для приведения в движение различных самокатов, велосипедов с электродвигателем и даже автомобилей.

Справедливости ради следует сказать, что «литий-ионный аккумулятор» — это обобщенное название целой группы электрохимических элементов, переносчиком заряда в которых выступают ионы лития. Разница заключается в составе материала катода и типе электролита.

Наибольшее распространение в бытовом сегменте получили литий-полимерные аккумуляторы, в которых в качестве электролита используется специальный твердый полимер, а катодный и анодный материал нанесены на тонкие слои алюминиевой и медной фольги соответственно. Такое конструктивное решение позволяет производить аккумуляторы любой формы и размера, изящно «вписывая» их в разрабатываемые устройства.

Существенный недостаток твердого полимера — его плохая проводимость при нормальной температуре окружающей среды (+ 25 °С). Наилучшие показатели достигаются при увеличении температуры до + 60 °С, а это уже опасно с точки зрения обычного использования. Поэтому производители идут на небольшие ухищрения, добавляя к полимеру электролит в жидком или желеобразном состоянии.

Существенное отличие конструкции литий-ионных аккумуляторов от традиционной конструкции заключается в обязательном наличии разделительного сепаратора, исключающего свободное перемещение ионов лития, в моменты, когда аккумулятор не используется.

Другой элемент, который должен обязательно присутствовать в схеме аккумулятора — BMS-контроллер (Battery Management System), отвечающий за корректную и сбалансированную зарядку ячеек аккумулятора.

Li-ion аккумуляторы при высокой удельной емкости обладают малым весом. Для их зарядки нужно не так уж много времени. У них практически отсутствует эффект памяти и саморазряд. К аккумуляторам литий-ионного типа не предъявляется особых требований к соблюдению циклов заряда/разряда. Заряжать их можно в любое удобное время, не привязываясь к величине остаточного заряда элемента. Хранить Li-ion батареи рекомендуется наполовину заряженными.

Самым существенным недостатком литий-ионного элемента является его категорическое «нежелание» полноценно работать при отрицательных температурах. Эксплуатация литиевого элемента на морозе очень быстро приблизит его выход из строя.

Источник

Читайте также:  Загорелась лампочка аккумулятора шкода фабия
Оцените статью