Секреты качественных ячеек аккумулятора
Большинство аккумуляторов современных электровелосипедов собраны на основе литий-ионных ячеек типоразмера 18650. Это самый распространённый формат ячеек, что подтверждается также фактом их использования при сборке аккумуляторов некоторых электромобилей американской компании Tesla, в частности, для спортивного автомобиля Tesla Roadster.
Очевидно, что в составе аккумулятора для автомобиля стоимостью несколько миллионов используются самые качественные ячейки. Но как отличить оригинальные ячейки от подделок? Прежде чем попытаться ответить на этот вопрос, давайте разберёмся, откуда взялось название “18650” и что находится внутри ячейки.
Формат 18650 получил столь широкое распространение благодаря тому, что из таких ячеек можно собрать аккумулятор практически любой конфигурации, и каждая из ячеек имеет собственный жёсткий корпус.
Название типоразмера «18650» содержит в себе размеры ячейки в миллиметрах — она имеет диаметр 18 мм и длину 65 мм. Ячейка собрана в цилиндрическом металлическом корпусе, который представляет из себя минусовой контакт, и содержит набор гибких пластин — анод и катод, разделённые сеператорами и свёрнутые в рулон.
Со стороны плюсового контакта предусмотрен предохранительный клапан избыточного давления, который срабатывает в случае неполадки, например, при коротком замыкании. Это обеспечивает необходимый уровень безопасности при использовании таких ячеек.
Чтобы собрать качественную надёжную батарею, которая прослужит долго и не потеряет значительную часть ёмкости в первый год эксплуатации, нужно быть уверенным, что она собрана из качественных ячеек.
Основными показателями качества ячеек можно считать следующие:
● внутреннее сопротивление ячейки
● максимальный ток заряда и разряда
● отсутствие тока утечки
Внутреннее сопротивление ячейки определяет не только её способность отдавать высокие токи (то есть нагрузочную способность), но и то, насколько сильно она будет нагреваться при работе.
Чем ниже внутреннее сопротивление, тем лучше — тем легче она отдаёт ток и меньше греется. Ячейки с высоким внутренним сопротивлением даже при средних нагрузках достаточно сильно нагреваются, что приводит к их быстрой деградации и, как следствие, потере ёмкости.
Внутреннее сопротивление выражается в миллиомах (мОм). У качественных ячеек 18650 этот параметр находится в пределах 30 мОм. Например, в спецификации на ячейки LG HG2 указано значение “не более 20 мОм”.
Ячейки известных производителей, как правило, стоят дороже, так как обладают низким внутренним сопротивлением, отличаются высокой нагрузочной способностью и отсутствием тока утечки, а их реальная ёмкость равна или чуть больше заявленной.
Отсутствие тока утечки обеспечивает постоянство напряжения на её контактах с течением времени, а значит, ячейка при длительном хранении не разрядится ниже 2,5 В и не выйдет из строя.
В спецификациях на ячейки также указывается максимальный ток заряда и разряда, который не приведёт к ускоренной деградации ячеек.. К примеру, для ячеек LG HG2 максимальный ток разряда равен 20 А, а максимальный ток заряда — 4 А. При этом стандартным током зарядка считается ток, равный половине ёмкости ячейки (0,5 С), то есть для нашего случая это 0,5 * 3000 = 1500 мА.
Чем выше максимальный ток разряда, тем более высокую мощность может отдавать ячейка. Такие высокотоковые ячейки рассчитаны на применение в аккумуляторах шуруповёртов, электронных сигарет и электровелосипедов. Ячейки, рассчитанные на низкие токи, используются в менее мощных устройствах, например, в велосипедных фонарях.
Ёмкость современных литий-ионных ячеек типоразмера 18650 варьируется в диапазоне от 2000 до 3600 мАч. Если вам встретилось предложение более высокой ёмкости в таком корпусе, скорее всего это не соответствует действительности, и на практике она окажется значительно ниже заявленной.
Для определения ёмкости в процессе заряда производители ячеек используют схему зарядки CC-CV (Constant Current — Constant Voltage), при которой ячейка сначала заряжается постоянным током, пока напряжение не дойдёт до верхнего порога (4,2 В), а затем это напряжение поддерживается, снижая зарядный ток. Зарядка прекращается в момент снижения тока до значения тока отсечки.
Аналогичная схема зарядки применяется в зарядных устройствах для литий-ионных аккумуляторов, в этом состоит их отличие от блока питания, который не рекомендуется использовать для этих целей.
При определении ёмкости на разряде, как правило, используется ток 0,2С (20% от ёмкости). Например, при тестировании ячеек LG HG2 ёмкостью 3000 мАч разряд производится током 600 мА до достижения нижнего порога напряжения на ячейке (2,5 В), при этом поддерживается температура 23 градуса по Цельсию.
Крупнейшими производителями ячеек 18650 на сегодняшний день являются компании LG, Panasonic (Sanyo), Samsung и Sony.
Самые распространённые ячейки от компании LG носят название LG HG2. Они имеют номинальную ёмкость 3000 мАч и внутреннее сопротивление менее 20 мОм (на фото слева). Из наиболее ёмких ячеек этого производителя хорошо известны LG MJ1 ёмкостью 3500 мАч (справа).
Хорошо известная каждому японская компания Panasonic входит в десятку крупнейших в мире производителей литий-ионных аккумуляторов, и изготавливает их, в том числе, для компании Tesla.
Panasonic в 2009 году объявила о слиянии с компанией Sanyo Electric Co, однако в продаже встречаются как ячейки с маркировкой Panasonic (на фото слева), так и с маркировкой Sanyo (справа). Они маркируются как NCR18650GA и имеют ёмкость 3450 мАч.
Компания Sony была первой, выпустившей литий-ионный аккумулятор в 1991 году по патенту японского учёного-химика Акира Ёсино.
В настоящее время в продаже имеются аккумуляторы VTC4, VTC5, VTC6 этого производителя. Оригинальные ячейки VTC4 маркируются как US18650VTC4, имеют ёмкость 2100 мАч и внутреннее сопротивление по даташиту 12 мОм, они изображены на следующем фото.
Среди литий-ионных ячеек от компании Samsung в настоящее время наиболее распространены модели 25R (полное название INR18650-25R, изображена на фото слева) и 30Q (справа). Первая имеет ёмкость 2500 мАч, вторая — 3000 мАч.
Кроме перечисленных известных производителей существует множество других, преимущественно расположенных в Китае, среди которых встречаются не только те, кто производит ячейки под собственным брендом, но и те, кто подделывает ячейки известных производителей.
Качественные подделки во многих случаях довольно сложно отличить от оригинала по внешним признакам, но об этом мы более подробно поговорим чуть ниже.
При использовании батареи, собранной из некачественных ячеек, имеющих высокое внутреннее сопротивление, существует опасность её быстрой потери ёмкости. Этому могут способствовать две причины: деградация, вызванная высокой температурой, и разбалансировка батареи, то есть увеличение разброса напряжений между ячейками.
В спецификациях крупных производителей ячеек указываются диапазоны температур, в которых ячейки должны эксплуатироваться. К примеру ячейки LG HG2 должны заряжаться в диапазоне от 0 до +50 градусов, а разряжаться — в диапазоне от -20 до +75. При приближении к граничным значениям температур, скорость деградации ячеек будет увеличиваться.
При хранении ячеек, в том числе в процессе транспортировки от производителя к потребителю, также необходимо соблюдение температурного режима, причём чем больше срок хранения, тем уже допустимый температурный диапазон.
Например, в спецификациях на ячейки LG HG2 указано, что хранение в течение одного месяца допускается при температуре от -20 до +60 градусов, в течение 3 месяцев — от -20 до +45, а в течение года — от -20 до +20 градусов.
Литий-ионные ячейки работают в диапазоне от 2,5 В (иногда от 3 В) до 4,2 В. Если их разрядить ниже 2,5 В и оставить на длительное время, начнётся процесс ускоренной деградации, и соответственно, потеря ёмкости. Аналогичный результат получается и при заряде ячеек выше верхнего значения (4,2 В).
Для исключения таких ситуаций используется BMS (Battery Management System), или система управления батареей. Это плата, которая устанавливается в батарею и следит за тем, чтобы напряжения на ячейках были в нужном диапазоне.
Кроме того, BMS прекращает процесс заряда батареи как только на одной из ячеек напряжение достигло верхнего значения (4,2 В), а также отключает нагрузку при достижении нижнего порога (2,5 В или 3 В) на любой из ячеек.
Большинство современных BMS имеют функцию балансировки — выравнивания напряжения на ячейках путём шунтирования ячеек с максимальным напряжением в процессе зарядки. Это позволяет избежать значительной потери ёмкости при использовании ячеек среднего и низкого качества.
Для реализации функции включения/выключения батареи, на многих BMS предусмотрен отдельный вывод — два провода, которые подключаются к замку или кнопке на корпусе батареи.
Перед сборкой батареи необходимо определиться со схемой сборки, которая зависит от того, на какое рабочее напряжение должна быть батарея, и какую иметь ёмкость.
Схема сборки в общем смысле обозначается формулой aSbP, где a — количество блоков ячеек, соединённых последовательно (S — serial), b — количество параллельно соединённых ячеек внутри одного блока (P — parallel).
Номинальное напряжение батареи определяется как номинальное напряжение одной ячейки, умноженное на значение “а”. Ёмкость батареи определяется как ёмкость одной ячейки, умноженная на значение “b”. Например, батарея, собранная по схеме 10S5P из литий-ионных ячеек типоразмера 18650 ёмкостью 2500 мАч, будет иметь номинальное напряжение 36 В (3,6 В * 10) и ёмкость 12,5 Ач (2,5 Ач * 5).
В зависимости от схемы сборки и необходимой нагрузочной способности (мощности) батареи, подбирается соответствующая BMS. Существуют BMS с общим портом, когда заряд и разряд батареи выполняется через один и тот же разъём, и BMS с раздельным портом, когда используются разные разъёмы. Для наглядности, схемы подключения указанных видов BMS представлены на схеме.
С борка батареи выполняется в соответствии с разработанной схемой. Сначала ячейки набираются в холдеры (пластиковые разделители), а затем контакты соединяются с использованием точечной сварки, которая обеспечивает необходимое качество соединения и, в отличие от пайки, позволяет не перегреть ячейки.
К полученным блокам припаиваются балансировочные провода и силовые выводы, которые подключаются к BMS. После сборки батарея тестируется на ёмкость и упаковывается
Если заглянуть в спецификации к ячейкам 18650 крупных производителей, можно заметить, что большинство из них весит 45-50 грамм. Как ни странно, вес является одним из тех параметров, по которому можно определить подлинность ячеек.
Другим критерием может служить внешний вид — в сети довольно большое количество визуальных сравнений оригинальных ячеек с подделками и перечень выявленных отличий.
Кроме того, оригинальные ячейки в большинстве случаев стоят дороже неоригинальных, поэтому подозрительно низкая цена должна вас насторожить.
При заказе в онлайн-магазине вряд ли у Вас будет возможность проверить подлинность ячеек по внешнему виду на фотографиях, впрочем, как и по весу. В таких случаях может помочь наличие положительных отзывов людей, которые постоянно приобретают ячейки в конкретном магазине, и успели удостовериться в их качестве.
В магазине 5КИЛОВАТТ продаются аккумуляторные батареи построенные исключительно на качественных элементах питания производителей Panasonic и LG.
Используя эти аккумуляторы вы можете быть уверены в их надежности, долговечности и практичности.
Источник
Какие бывают аккумуляторы в мобильной, компьютерной и бытовой технике
Содержание
Содержание
Аккумуляторы окружают нас повсеместно. Их можно встретить как в привычных каждому пользователю мобильных гаджетах, так и в сложных системах резервного электропитания. В каждой из областей используется свой тип аккумуляторной батареи, в которой ее характеристики «раскрываются» наилучшим образом. В данном материале поговорим о типах аккумуляторных элементов, областях применения и основных правилах эксплуатации.
Аккумуляторы. Общие принципы
По историческим меркам аккумулятор — довольно «молодое» изобретение, которому немногим более 160 лет. Основной принцип работы любого аккумуляторного элемента — протекание в нем обратимой электрохимической реакции, т. е. при приложении к контактам элемента постоянного напряжения, на его пластинах (электродах) накапливается электрическая энергия, при приложении нагрузки — происходит ее расходование. Причем протекает такая реакция на протяжении большого количества циклов заряда/разряда. Как правило, возможное количество перезарядок зависит от типа аккумуляторного элемента, но в среднем, современный аккумулятор способен обеспечить 300–1000 полных циклов.
Работоспособным считается аккумулятор, остаточная емкость которого составляет 70–80 % от начальной. Элементы с меньшими показателями остаточной емкости считаются непригодными для дальнейшей эксплуатации, поскольку не могут обеспечить расчетную автономность.
Какого бы типа не был аккумулятор, костяк конструкции и основной принцип действия у них остается неизменным. В каждом аккумуляторе есть два электрода (положительный и отрицательный, иначе именуемые анод и катод), погруженные в специальную среду — электролит, являющуюся прекрасным «поставщиком» ионов вследствие электролитической диссоциации.
Ион — атом или молекула, несущая на себе электрический заряд. Если ион положительно заряжен — его называют катион, если отрицательно — анион.
В зависимости от используемого материала электродов и применяемого типа электролита существуют различные вариации аккумуляторных элементов, каждый из которых имеет свои конструкционные и эксплуатационные особенности. Ниже поговорим о наиболее распространенных типах аккумуляторов, сферах их применения и особенностях эксплуатации.
Свинцовые аккумуляторы
Несмотря на преклонный возраст технологии, свинцовые аккумуляторы до сих пор успешно применяются в системах резервного питания, автомобильном транспорте, системах аккумулирования возобновляемых источников энергии (солнечная и ветряная энергетика, гидроэнергетика и т. д.).
Как видно из названия, в качестве основного материала, из которого изготавливают электроды, выступает свинец. Точнее, для производства положительных электродов — просто свинец, а для изготовления отрицательных электродов — оксид свинца. В качестве электролита, как правило, выступает раствор серной кислоты.
Существует большое количество конструкций свинцового аккумулятора, направленных на улучшение его эксплуатационных характеристик. Поскольку свинец сам по себе достаточно мягкий металл с невысокой физической прочностью, в чистом виде он слабо противостоит вибрационным нагрузкам, поэтому для использования аккумуляторов, например, в транспорте, в сплав свинца добавляют кальций, делающий структуру металла более прочной.
Для использования свинцового аккумулятора в источниках бесперебойного питания, дабы не допустить контакт пользователя с кислотой, исключить необходимость обслуживания, а также не создавать условия для взрыва водорода, выделяемого из АКБ, при ее заряде, используют свинцовые аккумуляторы определенного типа. Такими аккумуляторами являются источники питания типа AGM (Absorbent Glass Mat), в которых абсорбированным электролитом (не жидким) пропитан специальный пористый мат из стекловолокна.
Довольно часто свинцовые аккумуляторы, выполненные по технологии AGM, ошибочно называют гелевыми. На самом деле это не так. Гелевые аккумуляторы — отдельная ветвь развития свинцовых источников питания.
Аккумуляторы, электролитом в которых выступает раствор серной кислоты в желеобразном состоянии, называются гелевыми. Они рассчитаны на медленную отдачу энергии, поэтому основная область их применения — использование в инертных системах накопления и расходования электроэнергии (солнечная энергетика, питание моторов кресел для инвалидов, гольф-каров и т. д.).
К неоспоримым преимуществам свинцовых аккумуляторов относятся их невысокая стоимость и возможность работы в широком диапазоне температур окружающей среды (от — 40 до + 40 ° С).
Один свинцовый аккумуляторный элемент выдает напряжение порядка 2 В и способен выдать удельной энергии из расчета 30–60 Вт*ч с 1 кг массы, что в сравнении с другими типами — достаточно мало. Такие аккумуляторы имеют высокие значения саморазряда, а их глубокий разряд приводит к разрушению и осыпанию пластин электродов и безвозвратной порче аккумулятора.
Никель-кадмиевые аккумуляторы
Следующим типом аккумуляторных элементов, активно использующихся во многих сферах, являются никель-кадмиевые аккумуляторы (NiCd). Их можно встретить в детских игрушках, пультах управления, фонариках, ручном аккумуляторном электроинструменте и т. д.
Конструкция элемента не претерпела изменений, только в качестве материала для изготовления электродов используются никель и кадмий, а точнее гидраты закиси этих металлов. В качестве электролита применяют гидроксид калия. Один элемент на основе этих металлов может выдать напряжение 1,2–1,35 В, а значение удельной энергии находится в диапазоне 40–80 Вт*ч/кг.
Никель-кадмиевые аккумуляторы — одни из самых морозоустойчивых. Они работают без существенной потери своей емкости при температурах, близких к –50 ° С, к тому же, абсолютно не боятся глубокого разряда, и после цикла зарядки полностью восстанавливают свои эксплуатационные характеристики.
Хранить NiCd аккумуляторы рекомендуется полностью разряженными.
К отрицательным моментам относят их малую удельную емкость, высокий саморазряд, длительное время зарядки (восполнять энергию нужно малыми зарядными токами) и ярко выраженный «эффект памяти».
Чтобы не испортить аккумулятор, его необходимо заряжать только после полного разряда! Пренебрежение этим правилом повлечет быструю потерю емкости и выход элемента из строя.
Заряжают NiCd-элементы малыми зарядными токами, значения которых составляет порядка 10 % от емкости аккумулятора.
Никель-металлогидридные аккумуляторы
Логическим продолжением никель-кадмиевых аккумуляторов стали никель-металлогидридные (NiMH) элементы питания. В них учтены и практически устранены недостатки предшественников. Аккумуляторы при тех же массогабаритных показателях имеют большую в 2–3 раза емкость, обладают высокой надежностью, с легкостью переносят глубокий разряд и перезаряд, менее подвержены эффекту памяти.
Немаловажную роль в популяризации и широком распространении NiMH элементов сыграл тот факт, что они не содержат в своем составе кадмия, очень вредного для окружающей среды металла. Следовательно, с повестки дня снимаются вопросы правильного хранения и утилизации таких элементов.
Для производства анода используют гидрид никеля с лантаном или литием — так называемый металлогидридный электрод. В качестве катода — оксид никеля. Электролитом выступает соединение гидроксида калия.
Заряжают никель-металлогидридные аккумуляторы большими (в сравнении с NiCd-элементами) токами, величины которых составляют порядка 20–25 % от емкости аккумулятора, но очень важно контролировать температуру элемента во время заряда. Если она превышает 45 °С, нужно немедленно прервать процесс зарядки, в противном случае существует риск порчи элемента.
Зарядку для NiMH-аккумуляторов можно использовать в паре с NiCd-элементами. Обратная совместимость недопустима! Алгоритмы зарядки никель-кадмия более примитивны, они могут причинить вред NiMH-элементу.
Никель-металлогидридные аккумуляторы хранят полностью заряженными. Поскольку этому типу элементов присущ высокий саморазряд, для сохранения работоспособности элемента его нужно периодически подвергать полному циклу разряда/заряда.
Никель-металлогидридные аккумуляторы используют в тех же сферах, что и никель-кадмиевые, однако, благодаря повышенной емкости, их охотно применяют в фототехнике, использующей для питания элементы типа АА и ААА.
NiMH элементы — самые морозоустойчивые. Они без проблем переносят эксплуатацию при экстремально низких температурах, достигающих -60 °С. По этой причине их довольно успешно применяют в электроинструменте, используемом при выполнении работ на открытом воздухе в зимнее время.
Один элемент генерирует 1,2–1,25 в ЭДС, а его удельная энергия составляет 60–75 Вт*ч/кг. Теоретический расчетный «потолок» этого параметра находится на уровне 300 Вт*ч/кг, но видимо технологии производства NiMH-элементов, еще не до конца совершенны.
Литий-ионные аккумуляторы
Современные мобильные устройства уже сложно представить без литий-ионных аккумуляторов. Именно их разработка дала мощный толчок к развитию легких и миниатюрных решений источников питания, и, как следствие, миниатюризации всего сегмента мобильных гаджетов.
Сильными сторонами Li-ion являются высокая плотность аккумулируемой энергии, ее удельное значение, в большинстве случаев, составляет солидные 280 Вт*ч/кг, недостижимые при использовании аккумуляторов другого типа. Именно по этой причине Li-ion аккумуляторы используются не только для питания персональных гаджетов, но и для приведения в движение различных самокатов, велосипедов с электродвигателем и даже автомобилей.
Справедливости ради следует сказать, что «литий-ионный аккумулятор» — это обобщенное название целой группы электрохимических элементов, переносчиком заряда в которых выступают ионы лития. Разница заключается в составе материала катода и типе электролита.
Наибольшее распространение в бытовом сегменте получили литий-полимерные аккумуляторы, в которых в качестве электролита используется специальный твердый полимер, а катодный и анодный материал нанесены на тонкие слои алюминиевой и медной фольги соответственно. Такое конструктивное решение позволяет производить аккумуляторы любой формы и размера, изящно «вписывая» их в разрабатываемые устройства.
Существенный недостаток твердого полимера — его плохая проводимость при нормальной температуре окружающей среды (+ 25 °С). Наилучшие показатели достигаются при увеличении температуры до + 60 °С, а это уже опасно с точки зрения обычного использования. Поэтому производители идут на небольшие ухищрения, добавляя к полимеру электролит в жидком или желеобразном состоянии.
Существенное отличие конструкции литий-ионных аккумуляторов от традиционной конструкции заключается в обязательном наличии разделительного сепаратора, исключающего свободное перемещение ионов лития, в моменты, когда аккумулятор не используется.
Другой элемент, который должен обязательно присутствовать в схеме аккумулятора — BMS-контроллер (Battery Management System), отвечающий за корректную и сбалансированную зарядку ячеек аккумулятора.
Li-ion аккумуляторы при высокой удельной емкости обладают малым весом. Для их зарядки нужно не так уж много времени. У них практически отсутствует эффект памяти и саморазряд. К аккумуляторам литий-ионного типа не предъявляется особых требований к соблюдению циклов заряда/разряда. Заряжать их можно в любое удобное время, не привязываясь к величине остаточного заряда элемента. Хранить Li-ion батареи рекомендуется наполовину заряженными.
Самым существенным недостатком литий-ионного элемента является его категорическое «нежелание» полноценно работать при отрицательных температурах. Эксплуатация литиевого элемента на морозе очень быстро приблизит его выход из строя.
Источник