Li-Ion аккумуляторы — правда и мифы.
2.5 В Li-Ion аккумулятор начинает очень быстро деградировать, и даже одна такая разрядка может существенно (до 10%!) уменьшить его емкость. К тому же при разряде до такого напряжение штатным зарядником зарядить его уже не получится — при падении напряжения ячейки аккумулятора ниже
3 В «умный» контроллер отключит ее как поврежденную, а если такие ячейки все — аккумулятор можно нести на помойку.
Но тут есть одно очень важное но, о котором все забывают: в телефонах, планшетах и других мобильных устройствах рабочий диапазон напряжений на аккумуляторе это 3.5-4.2 В. При опускании напряжения ниже 3.5 В индикатор показывает ноль процентов заряда и аппарат выключается, но до «критических» 2.5 В еще очень далеко. Это подтверждается тем что если подсоединить к такому «разряженному» аккумулятору светодиод то он может гореть еще долгое время (может кто-то помнит что раньше продавались телефоны с фонариками, которые включались кнопкой независимо от системы. Так вот там лампочка продолжала гореть и после разрядки и выключения телефона). То есть как видно при штатном использовании разрядки до 2.5 В не происходит, а значит разряжать акум до нуля процентов вполне можно.
Миф второй. При повреждении Li-Ion аккумуляторы взрываются.
Все мы помним «взрывной» Samsung Galaxy Note 7. Однако это скорее исключение из правил — да, литий очень активный металл, и взорвать его в воздухе нетрудно ( а в воде он и сам очень ярко горит). Однако в современных аккумуляторах используется не литий, а его ионы, которые куда менее активны. Так что чтобы произошел взрыв нужно сильно постараться — или повредить заряжающийся аккумулятор физически (устроить короткое замыкание), или заряжать очень высоким напряжением (тогда он сам повредится, однако скорее всего контроллер банально сгорит сам и не даст заряжать аккумулятор). Поэтому если у вас вдруг в руках оказался поврежденный или дымящийся аккумулятор — не стоит бросать его на стол и убегать из комнаты с криками «мы все умрем» — просто положите его в металлическую тару и вынесите на балкон (чтобы не дышать химией) — аккумулятор будет тлеть какое-то время и потом потухнет. Главное — не заливать водой, ионы конечно менее активные чем литий, но все же какое-то количество водорода при реакции с водой так же выделится (а он любит взрываться).
Миф третий. При достижении на Li-Ion аккумуляторе 300(500/700/1000/100500) циклов он становится небезопасен и его нужно срочно менять.
Миф, к счастью все меньше и меньше гуляющий по форумам и не имеющий под собой вообще никакого физического или химического объяснения. Да, во время эксплуатации электроды окисляются и коррозируют, что уменьшает емкость аккумулятора, но ничем кроме меньшего времени автономной работы и нестабильного поведения на 10-20% заряда это вам не грозит.
Миф четвертый. С Li-Ion аккумуляторами нельзя работать на морозе.
Это скорее рекомендация, чем запрет. Многие производители запрещают использовать телефоны при отрицательное температуре, да и многие сталкивались с быстрым разрядом и вообще отключением телефонов на холоде. Объяснение этому очень простое: электролит — это водосодержащий гель, а что происходит с водой при отрицательных температурах все знают (да, она замерзает если что), тем самым выводя некоторую область аккумулятора из работы. Это приводит к падениею напряжения, а контроллер начинает считать это разрядкой. Аккумулятору это не полезно, но и не смертельно (после нагрева емкость вернется), так что если вам позарез нужно пользоваться телефоном в мороз (именно пользоваться — достать из теплого кармана, посмотреть время и спрятать назад не считается) то лучше зарядите его на 100% и включите любой процесс, нагружающий процессор — так охлаждение будет происходить медленнее.
Миф пятый. Вздувшийся Li-Ion аккумулятор опасен, его нужно срочно выкинуть.
Это не совсем миф, скорее предосторожность — вздувшийся аккумулятор может банально лопнуть. С химической точки зрения все просто: при процессе интеркаляции происходит разложение электродов и электролита, в результате чего выделяется газ(так же он может выделяться и при перезарядке, но об этом чуть ниже). Но его выделяется крайне мало, и чтобы аккумулятор казался вздутым должно пройти несколько тсотен (если не тысяч) циклов перезарядки (если конечно он не бракованный). Проблем избавиться от газа нет — достаточно проткнуть клапан (в некоторых аккумуляторах он сам открывается при избыточном давлении) и стравить его (дышать им не рекомендую), после чего можно замазать дырку эпоксидной смолой. Конечно былую емкость это аккумулятору не вернет, но хотя бы теперь он точно не лопнет.
Миф шестой. Li-Ion аккумуляторам вреден перезаряд.
А вот это уже не миф, а суровая реальность — при перезарядке велик шанс что аккумулятор вздуется, лопнет и загорится — поверьте, мало удовольствия быть забрызганным кипящим электролитом. Поэтому во всех аккумуляторах стоят контроллеры, банально не дающие зарядить аккумулятор выше определенного напряжения. Но тут надо быть крайне осторожным в выборе аккумулятора — контроллеры китайских поделок зачастую могут сбоить, а фейерверк из телефона в 3 часа ночи думаю вас не обрадует. Разумеется, такая же проблема есть и в брендовых аккумуляторах, но во-первых там такое случается гораздо реже, а во-вторых вам по гарантии поменяют весь телефон. Обычно этот миф порождает следующий:
Миф седьмой. При достижении 100% нужно снимать телефон с зарядки.
Из шестого мифа это кажется разумным, но на деле нет смысла вставать посреди ночи и снимать устройство с зарядки: во-первых сбои контроллера крайне редки, а во-вторых даже при достижении 100% на индикаторе аккумулятор еще некоторое время дозаряжается до самого-самого максимума низкими токами, что добавляет еще 1-3% емкости. Так что на деле не стоит так сильно перестраховываться.
Миф имеет место быть по причине некачественности китайских зарядников — при нормальном напряжении в 5 +- 5% вольт они могут выдавать и 6, и 7 — контроллер, конечно, какое-то время будет сглаживать такое напряжение, однако в будущем оно в лучшем случае приведет к сгоранию контроллера, в худшем — к взрыву и (или) выходу из строя материнской платы. Бывает и обратное — под нагрузкой китайский зарядник выдает 3-4 вольта: это приведет к тому что аккумулятор не сможет зарядиться полностью.
Как видно из целой кучи заблуждений далеко не все имеют под собой научное объяснение, и еще меньше реально ухудшают характеристики аккумуляторов. Но это не значит что после прочтения моей статьи нужно бежать сломя голову и покупать дешевые китайские аккумуляторы за пару баксов — все-же для долговечности лучше взять или оригинальные, или качественные копии оригинальных.
Источник
Какие бывают аккумуляторы в мобильной, компьютерной и бытовой технике
Содержание
Содержание
Аккумуляторы окружают нас повсеместно. Их можно встретить как в привычных каждому пользователю мобильных гаджетах, так и в сложных системах резервного электропитания. В каждой из областей используется свой тип аккумуляторной батареи, в которой ее характеристики «раскрываются» наилучшим образом. В данном материале поговорим о типах аккумуляторных элементов, областях применения и основных правилах эксплуатации.
Аккумуляторы. Общие принципы
По историческим меркам аккумулятор — довольно «молодое» изобретение, которому немногим более 160 лет. Основной принцип работы любого аккумуляторного элемента — протекание в нем обратимой электрохимической реакции, т. е. при приложении к контактам элемента постоянного напряжения, на его пластинах (электродах) накапливается электрическая энергия, при приложении нагрузки — происходит ее расходование. Причем протекает такая реакция на протяжении большого количества циклов заряда/разряда. Как правило, возможное количество перезарядок зависит от типа аккумуляторного элемента, но в среднем, современный аккумулятор способен обеспечить 300–1000 полных циклов.
Работоспособным считается аккумулятор, остаточная емкость которого составляет 70–80 % от начальной. Элементы с меньшими показателями остаточной емкости считаются непригодными для дальнейшей эксплуатации, поскольку не могут обеспечить расчетную автономность.
Какого бы типа не был аккумулятор, костяк конструкции и основной принцип действия у них остается неизменным. В каждом аккумуляторе есть два электрода (положительный и отрицательный, иначе именуемые анод и катод), погруженные в специальную среду — электролит, являющуюся прекрасным «поставщиком» ионов вследствие электролитической диссоциации.
Ион — атом или молекула, несущая на себе электрический заряд. Если ион положительно заряжен — его называют катион, если отрицательно — анион.
В зависимости от используемого материала электродов и применяемого типа электролита существуют различные вариации аккумуляторных элементов, каждый из которых имеет свои конструкционные и эксплуатационные особенности. Ниже поговорим о наиболее распространенных типах аккумуляторов, сферах их применения и особенностях эксплуатации.
Свинцовые аккумуляторы
Несмотря на преклонный возраст технологии, свинцовые аккумуляторы до сих пор успешно применяются в системах резервного питания, автомобильном транспорте, системах аккумулирования возобновляемых источников энергии (солнечная и ветряная энергетика, гидроэнергетика и т. д.).
Как видно из названия, в качестве основного материала, из которого изготавливают электроды, выступает свинец. Точнее, для производства положительных электродов — просто свинец, а для изготовления отрицательных электродов — оксид свинца. В качестве электролита, как правило, выступает раствор серной кислоты.
Существует большое количество конструкций свинцового аккумулятора, направленных на улучшение его эксплуатационных характеристик. Поскольку свинец сам по себе достаточно мягкий металл с невысокой физической прочностью, в чистом виде он слабо противостоит вибрационным нагрузкам, поэтому для использования аккумуляторов, например, в транспорте, в сплав свинца добавляют кальций, делающий структуру металла более прочной.
Для использования свинцового аккумулятора в источниках бесперебойного питания, дабы не допустить контакт пользователя с кислотой, исключить необходимость обслуживания, а также не создавать условия для взрыва водорода, выделяемого из АКБ, при ее заряде, используют свинцовые аккумуляторы определенного типа. Такими аккумуляторами являются источники питания типа AGM (Absorbent Glass Mat), в которых абсорбированным электролитом (не жидким) пропитан специальный пористый мат из стекловолокна.
Довольно часто свинцовые аккумуляторы, выполненные по технологии AGM, ошибочно называют гелевыми. На самом деле это не так. Гелевые аккумуляторы — отдельная ветвь развития свинцовых источников питания.
Аккумуляторы, электролитом в которых выступает раствор серной кислоты в желеобразном состоянии, называются гелевыми. Они рассчитаны на медленную отдачу энергии, поэтому основная область их применения — использование в инертных системах накопления и расходования электроэнергии (солнечная энергетика, питание моторов кресел для инвалидов, гольф-каров и т. д.).
К неоспоримым преимуществам свинцовых аккумуляторов относятся их невысокая стоимость и возможность работы в широком диапазоне температур окружающей среды (от — 40 до + 40 ° С).
Один свинцовый аккумуляторный элемент выдает напряжение порядка 2 В и способен выдать удельной энергии из расчета 30–60 Вт*ч с 1 кг массы, что в сравнении с другими типами — достаточно мало. Такие аккумуляторы имеют высокие значения саморазряда, а их глубокий разряд приводит к разрушению и осыпанию пластин электродов и безвозвратной порче аккумулятора.
Никель-кадмиевые аккумуляторы
Следующим типом аккумуляторных элементов, активно использующихся во многих сферах, являются никель-кадмиевые аккумуляторы (NiCd). Их можно встретить в детских игрушках, пультах управления, фонариках, ручном аккумуляторном электроинструменте и т. д.
Конструкция элемента не претерпела изменений, только в качестве материала для изготовления электродов используются никель и кадмий, а точнее гидраты закиси этих металлов. В качестве электролита применяют гидроксид калия. Один элемент на основе этих металлов может выдать напряжение 1,2–1,35 В, а значение удельной энергии находится в диапазоне 40–80 Вт*ч/кг.
Никель-кадмиевые аккумуляторы — одни из самых морозоустойчивых. Они работают без существенной потери своей емкости при температурах, близких к –50 ° С, к тому же, абсолютно не боятся глубокого разряда, и после цикла зарядки полностью восстанавливают свои эксплуатационные характеристики.
Хранить NiCd аккумуляторы рекомендуется полностью разряженными.
К отрицательным моментам относят их малую удельную емкость, высокий саморазряд, длительное время зарядки (восполнять энергию нужно малыми зарядными токами) и ярко выраженный «эффект памяти».
Чтобы не испортить аккумулятор, его необходимо заряжать только после полного разряда! Пренебрежение этим правилом повлечет быструю потерю емкости и выход элемента из строя.
Заряжают NiCd-элементы малыми зарядными токами, значения которых составляет порядка 10 % от емкости аккумулятора.
Никель-металлогидридные аккумуляторы
Логическим продолжением никель-кадмиевых аккумуляторов стали никель-металлогидридные (NiMH) элементы питания. В них учтены и практически устранены недостатки предшественников. Аккумуляторы при тех же массогабаритных показателях имеют большую в 2–3 раза емкость, обладают высокой надежностью, с легкостью переносят глубокий разряд и перезаряд, менее подвержены эффекту памяти.
Немаловажную роль в популяризации и широком распространении NiMH элементов сыграл тот факт, что они не содержат в своем составе кадмия, очень вредного для окружающей среды металла. Следовательно, с повестки дня снимаются вопросы правильного хранения и утилизации таких элементов.
Для производства анода используют гидрид никеля с лантаном или литием — так называемый металлогидридный электрод. В качестве катода — оксид никеля. Электролитом выступает соединение гидроксида калия.
Заряжают никель-металлогидридные аккумуляторы большими (в сравнении с NiCd-элементами) токами, величины которых составляют порядка 20–25 % от емкости аккумулятора, но очень важно контролировать температуру элемента во время заряда. Если она превышает 45 °С, нужно немедленно прервать процесс зарядки, в противном случае существует риск порчи элемента.
Зарядку для NiMH-аккумуляторов можно использовать в паре с NiCd-элементами. Обратная совместимость недопустима! Алгоритмы зарядки никель-кадмия более примитивны, они могут причинить вред NiMH-элементу.
Никель-металлогидридные аккумуляторы хранят полностью заряженными. Поскольку этому типу элементов присущ высокий саморазряд, для сохранения работоспособности элемента его нужно периодически подвергать полному циклу разряда/заряда.
Никель-металлогидридные аккумуляторы используют в тех же сферах, что и никель-кадмиевые, однако, благодаря повышенной емкости, их охотно применяют в фототехнике, использующей для питания элементы типа АА и ААА.
NiMH элементы — самые морозоустойчивые. Они без проблем переносят эксплуатацию при экстремально низких температурах, достигающих -60 °С. По этой причине их довольно успешно применяют в электроинструменте, используемом при выполнении работ на открытом воздухе в зимнее время.
Один элемент генерирует 1,2–1,25 в ЭДС, а его удельная энергия составляет 60–75 Вт*ч/кг. Теоретический расчетный «потолок» этого параметра находится на уровне 300 Вт*ч/кг, но видимо технологии производства NiMH-элементов, еще не до конца совершенны.
Литий-ионные аккумуляторы
Современные мобильные устройства уже сложно представить без литий-ионных аккумуляторов. Именно их разработка дала мощный толчок к развитию легких и миниатюрных решений источников питания, и, как следствие, миниатюризации всего сегмента мобильных гаджетов.
Сильными сторонами Li-ion являются высокая плотность аккумулируемой энергии, ее удельное значение, в большинстве случаев, составляет солидные 280 Вт*ч/кг, недостижимые при использовании аккумуляторов другого типа. Именно по этой причине Li-ion аккумуляторы используются не только для питания персональных гаджетов, но и для приведения в движение различных самокатов, велосипедов с электродвигателем и даже автомобилей.
Справедливости ради следует сказать, что «литий-ионный аккумулятор» — это обобщенное название целой группы электрохимических элементов, переносчиком заряда в которых выступают ионы лития. Разница заключается в составе материала катода и типе электролита.
Наибольшее распространение в бытовом сегменте получили литий-полимерные аккумуляторы, в которых в качестве электролита используется специальный твердый полимер, а катодный и анодный материал нанесены на тонкие слои алюминиевой и медной фольги соответственно. Такое конструктивное решение позволяет производить аккумуляторы любой формы и размера, изящно «вписывая» их в разрабатываемые устройства.
Существенный недостаток твердого полимера — его плохая проводимость при нормальной температуре окружающей среды (+ 25 °С). Наилучшие показатели достигаются при увеличении температуры до + 60 °С, а это уже опасно с точки зрения обычного использования. Поэтому производители идут на небольшие ухищрения, добавляя к полимеру электролит в жидком или желеобразном состоянии.
Существенное отличие конструкции литий-ионных аккумуляторов от традиционной конструкции заключается в обязательном наличии разделительного сепаратора, исключающего свободное перемещение ионов лития, в моменты, когда аккумулятор не используется.
Другой элемент, который должен обязательно присутствовать в схеме аккумулятора — BMS-контроллер (Battery Management System), отвечающий за корректную и сбалансированную зарядку ячеек аккумулятора.
Li-ion аккумуляторы при высокой удельной емкости обладают малым весом. Для их зарядки нужно не так уж много времени. У них практически отсутствует эффект памяти и саморазряд. К аккумуляторам литий-ионного типа не предъявляется особых требований к соблюдению циклов заряда/разряда. Заряжать их можно в любое удобное время, не привязываясь к величине остаточного заряда элемента. Хранить Li-ion батареи рекомендуется наполовину заряженными.
Самым существенным недостатком литий-ионного элемента является его категорическое «нежелание» полноценно работать при отрицательных температурах. Эксплуатация литиевого элемента на морозе очень быстро приблизит его выход из строя.
Источник