100 ваттные солнечные панели

Опыт использования 2-х солнечных батарей 100P12-EX по 100 Вт поликристалл

Прошел почти год как я использую солнечные батареи на даче и два ветряка. Две панели по 100 ватт были приобретены в прошлом году в (май 2013 год), обошлись мне в 7100 рублей каждая. На данный момент проработали, лето, зиму, сейчас конец марта 2014 год. Солнечные батареи оправдали все надежды, выдавали свои заявленные характеристики, вообще к самим панелям пока нареканий нет. В отличие от монокристаллических, поликристаллические дают чуть больше энергии в пасмурную погоду, что хорошо в наших климатических условиях.
На даче минимальное энергопотребление, это светодиодные ленты, три шт. по 1м. длинной, потребление каждой 0,5А. плюс на улице пара светодиодных лампочек. Небольшой телевизор на 12вольт. 21дюйм экран. А так же зарядники для телефонов планшетов и интернет 3джи вай-фай роутер, в общем полный набор для доступа в интернет. Так же имеется дешевый инвертор 12/220вольт, через который иногда включаю маленькую балкарку, кипятильник, паяльник пр. В среднем энергопотребление 300-500ватт энергии в сутки.

Сначала у меня были два самодельных ветрогенератора, к которым я изготовил самодельный балластный регулятор. С появлением панелей надобность летом в ветряках отпала, а солнечные панели я подключил к этому балластному регулятору. Подробнее о этом самодельном контроллере можно узнать в других статьях из раздела.

Читайте также:  Освещение без электричества солнечные батареи

На фото эти ветряки

В общем летом, и до самого конца сентября мне хватало всего одной солнечной батареи, вторая просто висела на стенке и не была подключена. При каждодневном солнце аккумуляторы, которых было 3шт. по 60А/ч очень быстро заряжались. И это не удивительно, панель давала мощность до 70ватт в час в при ярком солнце, а за темное время суток с аккумуляторов бралось всего около 150ватт. К 10-ти часам утра аккумуляторы обычно уже полностью заряжены.

В общем до осени было все круто, но когда на дворе уже стоял ноябрь, то уже две панели в пасмурные дни не могли за световой день и 200 ватт выдать. В условиях постоянной пасмурной погоды аккумуляторы сильно разрядились и приходилось экономить электричество и ждать, когда же выйдет солнце. Кстати многие спрашивают, сколько панели дают в пасмурную погоду — по-разному, зависит от освещенности. Если днем солнце перекроет на короткое время тучка, то ток падает с 5,7А до 2-3А. А если небо туго затянуло тучами, то ток всего 0,2-0,4А. Кстати не смотря на то что панели по 100 ватт без умного контроллера реальная мощность доходит только до 70 ватт, чтобы получить всю мощность нужно использовать МРРТ контроллеры. У меня же вообще тогда был самодельный, но правда вполне рабочий.

Фото этих панелей, они сейчас подняты по выше, закреплены на самой крыше чтобы зимой низкое солнце утром и вечером больше времени попадало на панели

В декабре вместе с солнечными батареями уже трудились два самодельных ветряка номинальной мощностью по 100 ватт. Но солнца совсем не-было по подсчетам от панелей за световой день энергии приходило всего 30-60ватт. Так же и ветра почти не-было, поэтому аккумуляторы уже много дней прибывали в полном разряде, хватало их только на освещение. Если бы стоял заводской контроллер, то он давно бы отключил аккумуляторы, но я высаживал аккумуляторы даже до 7вольт. В общем к весне они были еле живые. Изначальная емкость аккумуляторов была180А/ч стала всего около 20А/ч. Это я к тому что не высаживайте так аккумуляторы, иначе придется скоро новые покупать. Аккумуляторы правда отдельная тема и об этом в других статьях.

Зима не лучшее время для выработки солнечной энергии. А с ветром в мой местности всегда проблемы, нормальный ветер бывает один два раза в месяц. В новогодние праздники 16 дней не было ни ветра ни солнца. В такие погодные капризы чтобы не было перебоев нужно иметь бензогенератор, или очень мощную ветросолнечную систему, чтобы даже в пасмурные дни чтото реальное вырабатывалось, или кучу аккумуляторов чтобы пару недель можно прожить только на акб., но самое дешевое это бензогенератор, который нужно то всего три раза в год использовать, что дешевле чем покупать много солнечных панелей, аккумуляторов, или ставить ветряк с большим запасом мощности.

Сейчас я заменил аккумуляторы, купил один автомобильный самый дешевый на 55А/ч. Так же на али экспресс купил контроллер для солнечных батарей.

Ниже на фото контроллер солар 30 МРРТ

Солнце каждый день и с электричеством никаких перебоев нет, питаемся словно от центральной электросети. Ветряки поработали на славу зимой и теперь сняты до следующей зимы. Кстати зимой ветряки здорово выручали и вырабатывали намного больше чем солнечные панели. Общий вывод сложился такой, солнечные панели — это реальный способ автономного электрообеспечения, и дешевый если не надо питать прожорливую технику типа холодильника, насоса и др.

В летний период панели очень хорошо работают. За световой день одна панель мощностью 100ватт может отдавать до 700-800 ватт/ч энергии, а если умный контроллер, то еще больше. Имея 2-3 таких панели и аккумулятор емкостью около 200А/ч летом можно питать полностью небольшой домик, (насос, холодильник и прочее). За месяц можно получить до 60кВт/ч энергии. Если нужно больше, 300-400кВт/ч, то цена за электростанцию будет не маленькая. А для минимальных потребностей 30-50 тысяч рублей нормальная цена, зато несколько лет по крайней мере летом всегда с электричеством, как умрут аккумуляторы их просто заменить и электростанция как новая.

Источник

Что можно запитать от 100Вт солнечной панели Комментировать

Что может работать от одной 100Вт солнечной панели? Этот вопрос мы часто слышим от новичков в мире солнечной энергетики и от тех, кто только собирается в неё погрузиться.
Обычно, когда мы проектируем солнечную электростанцию, то мы начинаем со списка электроприборов, которые должны работать от солнечной электростанции, т.е. составляем список нагрузок. Исходя из этого подбирается количество и мощность солнечных панелей, а также сопутствующее оборудование. Сейчас мы будем действовать от обратного. Посмотрим что мы сможем запитать от одной солнечной панели мощностью 100 ватт.

“100Вт” ≠ 100Вт

Когда мы говорим, что солнечная панель имеет мощность 100Вт, то такую мощность она выдаёт при интенсивности солнечного излучения 1000Вт/м². Обычно такая интенсивность бывает летом в ясную погоду, когда солнце находится в зените. Естественно, производители не бегают каждый раз на улицу с солнечной панелью, они тестируют их мощность при определённых лабораторных условиях – STC (Standart Test Conditions) или так называемых “стандартных тестовых условиях”. Эти условия следующие:

  • интенсивность солнечного излучения 1000 Вт/м²
  • температура воздуха 25°С
  • солнечные лучи падают перпендикулярно на солнечную панель
  • скорость ветра равна нулю
  • масса воздуха 1.5
  • некоторые другие критерии

Таким образом, реальная выходная мощность солнечных панелей может варьироваться в зависимости внешних погодных условий. При расчётах обычно мы занижаем мощность солнечных панелей, основываясь на разнице между лабораторными испытаниями и вашей реальной установкой.
Если 12В солнечная панель имеет мощность 100Вт, то имеется ввиду мгновенная мощность. Если проведём измерения при условиях STC, то мы должны получить выходное напряжение

18В и ток 5.55А. Мощность – это произведение напряжения на ток (P=V*I), поэтому 18В·5.55А = 100Вт.

Здесь даже можно провести небольшую аналогию с автомобилем, мощность – это как скорость автомобиля. Если автомобиль едет с постоянной скоростью 100км/ч, то за 1 час он проедет 100км. Тоже самое с солнечной панелью. Чтобы определить какое количество энергии будет произведено за определённое время, нужно количество ватт умножить на количество часов. Например, за 1 час будет сгенерирован 100Вт x 1ч = 100ватт·часов = 100Вт·ч .

Если рассмотреть всё это на конкретной солнечной панели, то можно взять солнечную панель Delta SM 100-12P оптимальное рабочее напряжение 18.1В (Ump) и оптимальный рабочий ток 5.52А. 18.1В х 5.52А = 99.91Вт (100Вт) .

Что можно записать от 100Вт солнечной панели?

Теперь нам нужно выяснить, сколько часов нужно подставлять в уравнение, чтобы определить, сколько энергии будет генерироваться солнечной панелью за день. А сколько часов реального солнечного излучения равносильно стандартным тестовым условиям? Как мы отметили выше, интенсивность солнечного излучения близка или идентичная тестовым, в полдень, когда солнце находится в зените, т.е в период 12.00-13.00.

Сколько часов солнечная панель будет подвергаться солнечному излучению в течение дня?

Интенсивность солнечного излучения в течение дня

Количество часов солнечного света, равное полудню, называется инсоляцией или эффективным солнечным часом (ESH, Effective Solar Hours).
Вы прекрасно знаете, что несмотря на то, что солнце встаёт в 8 утра, оно не такое яркое как в полдень. Поэтому, если продолжительность солнечного дня составляет 10-12 часов, то нельзя просто умножить 100Вт х 10часов (или на 12). Так, между 8 и 9 утра интенсивность солнца приблизительно наполовину меньше, чем в полдень. Поэтому 1 утренний час приблизительной равен половине эффективного солнечного часа. Кроме того, зимой световой день значительно короче чем летом, еще и интенсивность излучения слабее – т.е. количество эффективных солнечных часов в течение года сильно варьируется.

Влияние местоположения на выработку энергии

Ваше местоположение также определяет количество эффективных солнечных часов. Например, для Казани количество эффективных солнечных часов составляет 3.5ч, для Москвы 3ч., для Краснодара 3.7ч – это усреднённые значения в день в течение года по данным с сайта NREL PVWatts Calculator.

Расчёт в PVWatts Calculator для Казани

Учитываем использование в течение года

Возвращаясь к рассматриваемому вопросу о том, что можно запитать от 100Вт панели, теперь нужно рассмотреть будут ли вы её использовать круглый год или только в определённый период, например, в период весна-осень. Если вы хотите использовать в течение всего года, то нужно рассмотреть самый худший вариант, т.е. самый худший месяц в году с точки зрения солнечной энергетики.

Для этого можно воспользоваться еще один полезным сервисом, он чем-то похож на NREL PVWatts Calculator, но здесь сразу отображается оптимальный угол наклона солнечных панелей для вашего местоположения. Данный сервис полностью на английском языке, но там всё интуитивно понятно и можно самостоятельно разобраться что к чему за пару минут.

Для начала из выпадающего списка нужно выбрать страну (Russian Federation), затем город (Kazan’) и потом направление солнечных панелей, в нашем случае выбираем юг (Facing directly South).

Выбираем страну, город, направление

Далее система предлагает выбрать угол наклона солнечной панели среди нескольких предложенных вариантов:

  • Вертикальная поверхность
  • Оптимальный среднегодовой угол
  • Изменение угла наклона в течение года
  • Максимальная зимняя выработка
  • Максимальная летняя выработка
  • Плоская поверхность

Выбираем угол наклона солнечных панелей

Поскольку мы размещаем одну 100Вт панель, то давайте разместим её под “зимним” углом. Для Казани самый худший месяц году – это декабрь, в котором в среднем за день только 1.41 эффективных солнечных часа. Получается в декабре за один день 100Вт будет вырабатывать 141Вт·ч. Только нужно помнить, что это усреднённое значение для всего месяца, поэтому в какие-то дни выработка будет больше, в какие меньше, а в какие-то может даже будет близко к этому значению, но не каждый день. В среднем, если мы просуммируем выработку за все дни в декабре и разделим на количество дней, то получим значение близкое к 141Вт·ч.

Учитываем потери

Ничто в реально работающей системе не обходится без потерь, поэтому нужно учитывать падение напряжения на проводах, пыль и грязь на поверхности солнечных панелей, потери на контроллере заряда и прочее. Поэтому мы умножим 141Вт·ч х 0,7 = 98.7Вт·ч (30% фактор потерь). Это всё равно, что потерять 1/3 вырабытываемой мощности, но это реальность и от нёё никуда не деться. В итоге в декабре мы получили прибл. 100Вт·ч/день. Что теперь можно сделать с этой мощностью?

Подбираем контроллер заряда и аккумулятора для хранения энергии

Для начала, вырабатываемую энергию нужно где-то хранить, чтобы можно было использовать её позже, когда она понадобится. Для хранения используется аккумуляторная батарея. Перед этим нам нужен контроллер заряда, который регулирует процесс подачей энергии в аккумуляторную батарею глубокого разряда, которую можно заряжать и разряжать на регулярной основе. В качестве контроллера заряда идеально подойдёт EPSOLAR 1012LS – это простой, но надёжный ШИМ-контроллер заряда с номинальным напряжением 12В и и максимальным током заряда до 10А.

Какой ёмкости аккумулятор нужно использовать? Итак у нас есть 100Вт·ч которыми мы заряжаем 12В аккумулятор. Поскольку ватты делённые на вольты равны амперам, то получаем 100Вт·ч : 12В

8А·ч . Несмотря на то, что используем аккумуляторы глубокого разряда, они всё равно не любят разряда более чем на 50% (самый оптимальный вариант – это разряд не более чем на треть). Тогда оптимальный вариант аккумулятора для зимнего времени 8А·ч х 2 = 16А·ч.
Количество энергии, которую может хранить аккумулятор меняется в зависимости от температуры. Так, запасённая энергия при 0°С на 15% меньше, чем при 20°С, поэтому умножаем 16А·ч х 1.15 = 18.4 А·ч .

Подбираем инвертор

Далее нам нужно использовать инвертор, для преобразования постоянного напряжения от аккумулятора в привычные нам 220В. Оптимальный вариант для маленьких система это компактный 300Вт инвертор ИС2-12-300. Возьмём коэффициент потерь на преобразование 5%. Тогда 18.4 А·ч / 0.95 = 19.4 А·ч ., округлим полученное значение до 19А·ч.

Рассчитываем время автономной работы

Солнце светит не каждый день, поэтому нам нужно учитывать пасмурные дни, дождь снег. Нам нужно для себя рассчитать в течение какого количество дней без солнца мы хотели бы иметь запас энергии. Это называется днями автономии. Скажем так, нам нужно 2 дня автономии, тогда 19А·ч. х 2 = 38А·ч, получается, совместно с 100Вт солнечной панелью мы должны использовать аккумулятор ёмкостью

40А·ч. Можно чуть больше, можно чуть меньше.

Хорошим выбором является аккумулятор Delta GEL 12-33 – гелевый аккумулятор ёмкостью 33А·ч, оснащён цифровым индикатором напряжения, уровня заряда, а также количества отработанных дней. Под крышкой аккумулятора имеются дополнительный контейнеры со специализированным раствором, долив которого позволяет продлить срок службы батареи на 15-30%. Также не плохим выбором будет AGM аккумулятор ВОСТОК СК-1233 ёмкостью также 33А·ч.

Теперь мы можем подумать, что делать с вырабатываемой и запасённой мощностью. Итак, зимой у нас есть 100Вт*ч запасённой мощности. Их хватило бы на:

  • На питание 4-х LED ламп мощностью 5 Вт в течение в часов, или
  • На 2 часа работы ноутбука со средним потреблением 50Вт*ч, или
  • На просмотр в течение

1.5 часов телевизора, или

  • 15-20 полностью зарядить смартфон
  • Это всё мы рассчитали для самого “плохого” зимнего месяца, в летнее время выработка энергии будет гораздо больше и соответственно, нужно будет использовать более ёмкий аккумулятор.

    Думаем алгоритм расчёта вам понятен и при необходимости вы сможете самостоятельно рассчитать выработку энергии как с другим номиналом солнечной панели, так и для другого времени года.

    Добавить комментарий Отменить ответ

    Добро пожаловать в блог

    Вы попали в блог компании REENERGO. Здесь мы стараемся регулярно публиковать полезные и интересные новости и статьи из области альтернативной энергетики.

    Источник

    Оцените статью